American library books » Biography & Autobiography » Faraday as a Discoverer by John Tyndall (ebook reader with built in dictionary TXT) 📕

Read book online «Faraday as a Discoverer by John Tyndall (ebook reader with built in dictionary TXT) 📕».   Author   -   John Tyndall



1 ... 6 7 8 9 10 11 12 13 14 ... 21
Go to page:
ran from electrode to electrode. And the thought impressed him more and more that ordinary electric induction was also transmitted and sustained by the action of ‘contiguous particles.’

 

His first great paper on frictional electricity was sent to the Royal Society on November 30, 1837. We here find him face to face with an idea which beset his mind throughout his whole subsequent life,—the idea of action at a distance. It perplexed and bewildered him. In his attempts to get rid of this perplexity, he was often unconsciously rebelling against the limitations of the intellect itself. He loved to quote Newton upon this point; over and over again he introduces his memorable words, ‘That gravity should be innate, inherent, and essential to matter, so that one body may act upon another at a distance through a vacuum and without the mediation of anything else, by and through which this action and force may be conveyed from one to another, is to me so great an absurdity, that I believe no man who has in philosophical matters a competent faculty of thinking, can ever fall into it. Gravity must be caused by an agent acting constantly according to certain laws; but whether this agent be material or immaterial, I have left to the consideration of my readers.’[1]

 

Faraday does not see the same difficulty in his contiguous particles.

And yet, by transferring the conception from masses to particles, we simply lessen size and distance, but we do not alter the quality of the conception. Whatever difficulty the mind experiences in conceiving of action at sensible distances, besets it also when it attempts to conceive of action at insensible distances. Still the investigation of the point whether electric and magnetic effects were wrought out through the intervention of contiguous particles or not, had a physical interest altogether apart from the metaphysical difficulty. Faraday grapples with the subject experimentally.

By simple intuition he sees that action at a distance must be exerted in straight lines. Gravity, he knows, will not turn a corner, but exerts its pull along a right line; hence his aim and effort to ascertain whether electric action ever takes place in curved lines.

This once proved, it would follow that the action is carried on by means of a medium surrounding the electrified bodies. His experiments in 1837 reduced, in his opinion, this point of demonstration.

He then found that he could electrify, by induction, an insulated sphere placed completely in the shadow of a body which screened it from direct action. He pictured the lines of electric force bending round the edges of the screen, and reuniting on the other side of it; and he proved that in many cases the augmentation of the distance between his insulated sphere and the inducing body, instead of lessening, increased the charge of the sphere. This he ascribed to the coalescence of the lines of electric force at some distance behind the screen.

 

Faraday’s theoretic views on this subject have not received general acceptance, but they drove him to experiment, and experiment with him was always prolific of results. By suitable arrangements he placed a metallic sphere in the middle of a large hollow sphere, leaving a space of something more than half an inch between them.

The interior sphere was insulated, the external one uninsulated.

To the former he communicated a definite charge of electricity.

It acted by induction upon the concave surface of the latter, and he examined how this act of induction was effected by placing insulators of various kinds between the two spheres. He tried gases, liquids, and solids, but the solids alone gave him positive results.

He constructed two instruments of the foregoing description, equal in size and similar in form. The interior sphere of each communicated with the external air by a brass stem ending in a knob.

The apparatus was virtually a Leyden jar, the two coatings of which were the two spheres, with a thick and variable insulator between them. The amount of charge in each jar was determined by bringing a proof-plane into contact with its knob and measuring by a torsion balance the charge taken away. He first charged one of his instruments, and then dividing the charge with the other, found that when air intervened in both cases the charge was equally divided.

But when shellac, sulphur, or spermaceti was interposed between the two spheres of one jar, while air occupied this interval in the other, then he found that the instrument occupied by the ‘solid dielectric’ takes more than half the original charge. A portion of the charge was absorbed by the dielectric itself. The electricity took time to penetrate the dielectric. Immediately after the discharge of the apparatus, no trace of electricity was found upon its knob. But after a time electricity was found there, the charge having gradually returned from the dielectric in which it had been lodged. Different insulators possess this power of permitting the charge to enter them in different degrees. Faraday figured their particles as polarized, and he concluded that the force of induction is propagated from particle to particle of the dielectric from the inner sphere to the outer one. This power of propagation possessed by insulators he called their ‘Specific Inductive Capacity.’

 

Faraday visualizes with the utmost clearness the state of his contiguous particles; one after another they become charged, each succeeding particle depending for its charge upon its predecessor.

And now he seeks to break down the wall of partition between conductors and insulators. ‘Can we not,’ he says, ‘by a gradual chain of association carry up discharge from its occurrence in air through spermaceti and water, to solutions, and then on to chlorides, oxides, and metals, without any essential change in its character?’

Even copper, he urges, offers a resistance to the transmission of electricity. The action of its particles differs from those of an insulator only in degree. They are charged like the particles of the insulator, but they discharge with greater ease and rapidity; and this rapidity of molecular discharge is what we call conduction.

Conduction then is always preceded by atomic induction; and when, through some quality of the body which Faraday does not define, the atomic discharge is rendered slow and difficult, conduction passes into insulation.

 

Though they are often obscure, a fine vein of philosophic thought runs through those investigations. The mind of the philosopher dwells amid those agencies which underlie the visible phenomena of Induction and Conduction; and he tries by the strong light of his imagination to see the very molecules of his dielectrics. It would, however, be easy to criticise these researches, easy to show the looseness, and sometimes the inaccuracy, of the phraseology employed; but this critical spirit will get little good out of Faraday. Rather let those who ponder his works seek to realise the object he set before him, not permitting his occasional vagueness to interfere with their appreciation of his speculations. We may see the ripples, and eddies, and vortices of a flowing stream, without being able to resolve all these motions into their constituent elements; and so it sometimes strikes me that Faraday clearly saw the play of fluids and ethers and atoms, though his previous training did not enable him to resolve what he saw into its constituents, or describe it in a manner satisfactory to a mind versed in mechanics. And then again occur, I confess, dark sayings, difficult to be understood, which disturb my confidence in this conclusion. It must, however, always be remembered that he works at the very boundaries of our knowledge, and that his mind habitually dwells in the ‘boundless contiguity of shade’ by which that knowledge is surrounded.

 

In the researches now under review the ratio of speculation and reasoning to experiment is far higher than in any of Faraday’s previous works. Amid much that is entangled and dark we have flashes of wondrous insight and utterances which seem less the product of reasoning than of revelation. I will confine myself here to one example of this divining power. By his most ingenious device of a rapidly rotating mirror, Wheatstone had proved that electricity required time to pass through a wire, the current reaching the middle of the wire later than its two ends. ‘If,’ says Faraday, ‘the two ends of the wire in Professor Wheatstone’s experiments were immediately connected with two large insulated metallic surfaces exposed to the air, so that the primary act of induction, after making the contact for discharge, might be in part removed from the internal portion of the wire at the first instance, and disposed for the moment on its surface jointly with the air and surrounding conductors, then I venture to anticipate that the middle spark would be more retarded than before. And if those two plates were the inner and outer coatings of a large jar or Leyden battery, then the retardation of the spark would be much greater.’ This was only a prediction, for the experiment was not made.[2] Sixteen years subsequently, however, the proper conditions came into play, and Faraday was able to show that the observations of Werner Siemens, and Latimer Clark, on subterraneous and submarine wires were illustrations, on a grand scale, of the principle which he had enunciated in 1838. The wires and the surrounding water act as a Leyden jar, and the retardation of the current predicted by Faraday manifests itself in every message sent by such cables.

 

The meaning of Faraday in these memoirs on Induction and Conduction is, as I have said, by no means always clear; and the difficulty will be most felt by those who are best trained in ordinary theoretic conceptions. He does not know the reader’s needs, and he therefore does not meet them. For instance he speaks over and over again of the impossibility of charging a body with one electricity, though the impossibility is by no means evident. The key to the difficulty is this. He looks upon every insulated conductor as the inner coating of a Leyden jar. An insulated sphere in the middle of a room is to his mind such a coating; the walls are the outer coating, while the air between both is the insulator, across which the charge acts by induction. Without this reaction of the walls upon the sphere you could no more, according to Faraday, charge it with electricity than you could charge a Leyden jar, if its outer coating were removed. Distance with him is immaterial. His strength as a generalizer enables him to dissolve the idea of magnitude; and if you abolish the walls of the room—even the earth itself—he would make the sun and planets the outer coating of his jar. I dare not contend that Faraday in these memoirs made all his theoretic positions good. But a pure vein of philosophy runs through these writings; while his experiments and reasonings on the forms and phenomena of electrical discharge are of imperishable importance.

 

Footnotes to Chapter 8

 

[1] Newton’s third letter to Bentley.

 

[2] Had Sir Charles Wheatstone been induced to resume his measurements, varying the substances through which, and the conditions under which, the current is propagated, he might have rendered great service to science, both theoretic and experimental.

 

Chapter 9.

 

Rest needed—visit to Switzerland.

 

The last of these memoirs was dated from the Royal Institution in June, 1838. It concludes the first volume of his ‘Experimental Researches on Electricity.’ In 1840, as already stated, he made his final assault on the Contact Theory, from which it never recovered.[1]

He was now feeling the effects of the mental strain to which he had been subjected for so many years. During these years he repeatedly broke down. His wife alone witnessed the extent of his prostration, and to her loving care we, and the world, are indebted for the enjoyment of his presence here so

1 ... 6 7 8 9 10 11 12 13 14 ... 21
Go to page:

Free e-book: «Faraday as a Discoverer by John Tyndall (ebook reader with built in dictionary TXT) 📕»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment