History of Astronomy by George Forbes (classic children's novels TXT) đź“•
[2] _R. A. S. Monthly Notices_, Sup.; 1905.
[Illustration: CHALDÆAN BAKED BRICK OR TABLET, Obverse and reversesides, Containing record of solar eclipse, 1062 B.C., used lately byCowell for rendering the lunar theory more accurate than was possibleby finest modern observations. (British Museum collection,No. 35908.)]
[3] _R. A. S. Monthly Notices_, vol. x., p. 65.
[4] R. S. E. Proc., vol. x., 1880.
2. ANCIENT ASTRONOMY--THE CHINESE AND CHALDÆANS.
The last section must have made clear the difficulties the way ofassigning to the ancient nations their proper place in the developmentof primitive notions about astronomy. The fact that some allegedobservations date back to a period before the Chinese had invented theart of writing leads immediately to the question how far tradition canbe trusted.
Our first detailed knowledge was gathered in the far East bytravellers, and by the Jesuit priests, and was published in theeighteenth century. The As
Read free book «History of Astronomy by George Forbes (classic children's novels TXT) 📕» - read online or download for free at americanlibrarybooks.com
- Author: George Forbes
- Performer: -
Read book online «History of Astronomy by George Forbes (classic children's novels TXT) 📕». Author - George Forbes
Greenwich Observatory has been here selected for tracing the progress of accurate measurement. But there is one instrument of great value, the heliometer, which is not used at Greenwich. This serves the purpose of a double image micrometer, and is made by dividing the object-glass of a telescope along a diameter. Each half is mounted so as to slide a distance of several inches each way on an arc whose centre is the focus. The amount of the movement can be accurately read. Thus two fields of view overlap, and the adjustment is made to bring an image of one star over that of another star, and then to do the same by a displacement in the opposite direction. The total movement of the half-object glass is double the distance between the star images in the focal plane. Such an instrument has long been established at Oxford, and German astronomers have made great use of it. But in the hands of Sir David Gill (late His Majesty’s Astronomer at the Cape of Good Hope), and especially in his great researches on Solar and on Stellar parallax, it has been recognised as an instrument of the very highest accuracy, measuring the distance between stars correctly to less than a tenth of a second of arc.
The superiority of the heliometer over all other devices (except photography) for measuring small angles has been specially brought into prominence by Sir David Gill’s researches on the distance of the sun—_i.e.,_ the scale of the solar system. A measurement of the distance of any planet fixes the scale, and, as Venus approaches the earth most nearly of all the planets, it used to be supposed that a Transit of Venus offered the best opportunity for such measurement, especially as it was thought that, as Venus entered on the solar disc, the sweep of light round the dark disc of Venus would enable a very precise observation to be made. The Transit of Venus in 1874, in which the present writer assisted, overthrew this delusion.
In 1877 Sir David Gill used Lord Crawford’s heliometer at the Island of Ascension to measure the parallax of Mars in opposition, and found the sun’s distance 93,080,000 miles. He considered that, while the superiority of the heliometer had been proved, the results would be still better with the points of light shown by minor planets rather than with the disc of Mars.
In 1888-9, at the Cape, he observed the minor planets Iris, Victoria, and Sappho, and secured the co-operation of four other heliometers. His final result was 92,870,000 miles, the parallax being 8”,802 (_Cape Obs_., Vol. VI.).
So delicate were these measures that Gill detected a minute periodic error of theory of twenty-seven days, owing to a periodically erroneous position of the centre of gravity of the earth and moon to which the position of the observer was referred. This led him to correct the mass of the moon, and to fix its ratio to the earth’s mass
= 0.012240.
Another method of getting the distance from the sun is to measure the velocity of the earth’s orbital motion, giving the circumference traversed in a year, and so the radius of the orbit. This has been done by comparing observation and experiment. The aberration of light is an angle 20” 48, giving the ratio of the earth’s velocity to the velocity of light. The velocity of light is 186,000 miles a second; whence the distance to the sun is 92,780,000 miles. There seems, however, to be some uncertainty about the true value of the aberration, any determination of which is subject to irregularities due to the “seasonal errors.” The velocity of light was experimentally found, in 1862, by Fizeau and Foucault, each using an independent method. These methods have been developed, and new values found, by Cornu, Michaelson, Newcomb, and the present writer.
Quite lately Halm, at the Cape of Good Hope, measured spectroscopically the velocity of the earth to and from a star by observations taken six months apart. Thence he obtained an accurate value of the sun’s distance.[5]
But the remarkably erratic minor planet, Eros, discovered by Witte in 1898, approaches the earth within 15,000,000 miles at rare intervals, and, with the aid of photography, will certainly give us the best result. A large number of observatories combined to observe the opposition of 1900. Their results are not yet completely reduced, but the best value deduced so far for the parallax[6] is 8”.807 ± 0”.0028.[7]
FOOTNOTES:
[1] In 1480 Martin Behaim, of Nuremberg, produced his astrolabe for measuring the latitude, by observation of the sun, at sea. It consisted of a graduated metal circle, suspended by a ring which was passed over the thumb, and hung vertically. A pointer was fixed to a pin at the centre. This arm, called the alhidada, worked round the graduated circle, and was pointed to the sun. The altitude of the sun was thus determined, and, by help of solar tables, the latitude could be found from observations made at apparent noon.
[2] See illustration on p. 76.
[3] See Dreyer’s article on these instruments in Copernicus, Vol. I. They were stolen by the Germans after the relief of the Embassies, in 1900. The best description of these instruments is probably that contained in an interesting volume, which may be seen in the library of the R. A. S., entitled Chinese Researches, by Alexander Wyllie (Shanghai, 1897).
[4] Sir George Airy was very jealous of this honourable title. He rightly held that there is only one Astronomer Royal at a time, as there is only one Mikado, one Dalai Lama. He said that His Majesty’s Astronomer at the Cape of Good Hope, His Majesty’s Astronomer for Scotland, and His Majesty’s Astronomer for Ireland are not called Astronomers Royal.
[5] Annals of the Cape Observatory, vol. x., part 3.
[6] The parallax of the sun is the angle subtended by the earth’s radius at the sun’s distance.
[7] A. R. Hinks, R.A.S.; Monthly Notices, June, 1909.
11. HISTORY OF THE TELESCOPEAccounts of wonderful optical experiments by Roger Bacon (who died in 1292), and in the sixteenth century by Digges, Baptista Porta, and Antonio de Dominis (Grant, Hist. Ph. Ast.), have led some to suppose that they invented the telescope. The writer considers that it is more likely that these notes refer to a kind of camera obscura, in which a lens throws an inverted image of a landscape on the wall.
The first telescopes were made in Holland, the originator being either Henry Lipperhey,[1] Zacharias Jansen, or James Metius, and the date 1608 or earlier.
In 1609 Galileo, being in Venice, heard of the invention, went home and worked out the theory, and made a similar telescope. These telescopes were all made with a convex object-glass and a concave eye-lens, and this type is spoken of as the Galilean telescope. Its defects are that it has no real focus where cross-wires can be placed, and that the field of view is very small. Kepler suggested the convex eye-lens in 1611, and Scheiner claimed to have used one in 1617. But it was Huyghens who really introduced them. In the seventeenth century telescopes were made of great length, going up to 300 feet. Huyghens also invented the compound eye-piece that bears his name, made of two convex lenses to diminish spherical aberration.
But the defects of colour remained, although their cause was unknown until Newton carried out his experiments on dispersion and the solar spectrum. To overcome the spherical aberration James Gregory,[2] of Aberdeen and Edinburgh, in 1663, in his Optica Promota, proposed a reflecting speculum of parabolic form. But it was Newton, about 1666, who first made a reflecting telescope; and he did it with the object of avoiding colour dispersion.
Some time elapsed before reflectors were much used. Pound and Bradley used one presented to the Royal Society by Hadley in 1723. Hawksbee, Bradley, and Molyneaux made some. But James Short, of Edinburgh, made many excellent Gregorian reflectors from 1732 till his death in 1768.
Newton’s trouble with refractors, chromatic aberration, remained insurmountable until John Dollond (born 1706, died 1761), after many experiments, found out how to make an achromatic lens out of two lenses—one of crown glass, the other of flint glass—to destroy the colour, in a way originally suggested by Euler. He soon acquired a great reputation for his telescopes of moderate size; but there was a difficulty in making flint-glass lenses of large size. The first actual inventor and constructor of an achromatic telescope was Chester Moor Hall, who was not in trade, and did not patent it. Towards the close of the eighteenth century a Swiss named Guinand at last succeeded in producing larger flint-glass discs free from striae. Frauenhofer, of Munich, took him up in 1805, and soon produced, among others, Struve’s Dorpat refractor of 9.9 inches diameter and 13.5 feet focal length, and another, of 12 inches diameter and 18 feet focal length, for Lamont, of Munich.
In the nineteenth century gigantic reflectors have been made. Lassel’s 2-foot reflector, made by himself, did much good work, and discovered four new satellites. But Lord Rosse’s 6-foot reflector, 54 feet focal length, constructed in 1845, is still the largest ever made. The imperfections of our atmosphere are against the use of such large apertures, unless it be on high mountains. During the last half century excellent specula have been made of silvered glass, and Dr. Common’s 5-foot speculum (removed, since his death, to Harvard) has done excellent work. Then there are the 5-foot Yerkes reflector at Chicago, and the 4-foot by Grubb at Melbourne.
Passing now from these large reflectors to refractors, further improvements have been made in the manufacture of glass by Chance, of Birmingham, Feil and Mantois, of Paris, and Schott, of Jena; while specialists in grinding lenses, like Alvan Clark, of the U.S.A., and others, have produced many large refractors.
Cooke, of York, made an object-glass, 25-inch diameter, for Newall, of Gateshead, which has done splendid work at Cambridge. We have the Washington 26-inch by Clark, the Vienna 27-inch by Grubb, the Nice 291/2-inch by Gautier, the Pulkowa 30-inch by Clark. Then there was the sensation of Clark’s 36-inch for the Lick Observatory in California, and finally his tour de force, the Yerkes 40-inch refractor, for Chicago.
At Greenwich there is the 28-inch photographic refractor, and the Thompson equatoreal by Grubb, carrying both the 26-inch photographic refractor and the 30-inch reflector. At the Cape of Good Hope we find Mr. Frank McClean’s 24-inch refractor, with an object-glass prism for spectroscopic work.
It would be out of place to describe here the practical adjuncts of a modern equatoreal—the adjustments for pointing it, the clock for driving it, the position-micrometer and various eye-pieces, the photographic and spectroscopic attachments, the revolving domes, observing seats, and rising floors and different forms of mounting, the siderostats and coelostats, and other convenient adjuncts, besides the registering chronograph and numerous facilities for aiding observation. On each of these a chapter might be written; but the most important part of the whole outfit is the man behind the telescope, and it is with him that a history is more especially concerned.
SPECTROSCOPE.
Since the invention of the telescope no discovery has given so great an impetus to astronomical physics as the spectroscope; and in giving us information about the systems of stars and their proper motions it rivals the telescope.
Frauenhofer, at the beginning of the nineteenth century, while applying Dollond’s discovery to make large achromatic telescopes, studied the dispersion of light by a prism. Admitting the light of the
Comments (0)