Pedagogical Anthropology by Maria Montessori (best novels of all time TXT) π
Read free book Β«Pedagogical Anthropology by Maria Montessori (best novels of all time TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Maria Montessori
- Performer: -
Read book online Β«Pedagogical Anthropology by Maria Montessori (best novels of all time TXT) πΒ». Author - Maria Montessori
Types of Stature in Art.βThe existence of these different individual types, which combine a definite relationship of the parts of stature with the complete image of a well-defined individuality, was long ago perceived by the eye, or rather by the delicate intuition of certain eminent artists. These immortalised their several ideals, investing now the one type and now the other with the genius of their art. Thus, for example, Rubens embodies in his Flemish canvases the brachyscelous type, robust and jovial, and usually represents him as a man of mighty appetite revelling in the pleasures of the table.
Botticelli, on the contrary, has idealised the macroscelous type, in frail, diaphanous, almost superhuman forms, that seem, as they approach, to walk, shadow-like, upon the heads of flowers, without bending them beneath their feet and without leaving any trace of their passage. Accordingly, these two great artists have admirably realised, not only the two opposite types of stature, but also the psychic and moral attributes that respectively belong to them. But it was not granted to these artists to achieve the supreme glory of representing perfect human beauty in unsurpassed and classic masterpieces. The art of Greece alone succeeded in embodying in statues which posterity must admire but cannot duplicate, the medial, normal type of the perfect man.
Variations of Stature According to Sex.βIt is not always necessary to interpret the type of stature in the same sense. Even from an exclusively biological standpoint, it may lend itself to profoundly different interpretations.
Thus, for example, the type of stature varies normally according to the sex. Woman is more brachyscelous than man; but the degree of brachyscelia corresponds to a larger development of the lumbar segment of the spinal column, which corresponds to the functions of maternity.
In fact all the various segments of the spinal column show different proportions in the two sexes.
As we know, the spinal column consists of three parts; the cervical (corresponding to the neck), the thoracic (corresponding to the ribs), and the abdominal, including the os sacrum and the coccyx.
Now, Manouvrier, reducing the height of the spinal column to a scale of 100, expresses the relations of these different parts in the two sexes as follows:
Segments Men Women Cervical 22.1 23.9 Thoracic 58.5 55.4 Lumbar 11.4 23.7 Sacro-coccygeal 7.9 6.7In woman the thoracic segment is shorter and the abdominal is longer than in man; but the total sum in woman is relatively greater in proportion to the whole stature.
In a case like this we have no right to speak of a morphological or psychosocial superiority of type; nor would a fact of this sort have any weight, for example, in establishing the anthropological superiority of woman. Nevertheless, it may be asserted that, if the day comes when woman, having entered the ranks of social workers, shall prove that she is socially as useful as man, she will still be, in addition, the mother of the species, and for that reason preeminently the greater producer.
Now, it is beyond question that this indisputable superiority is in direct relation with the type of stature. But without insisting unduly on a point like this, we should note the connection between the brachyscelous type and the tendency shown by women to accumulate nutritive substances, adipose tissue; consequently, as compared with man, she is the more corpulentβas are all brachysceles as compared with macrosceles.
Types of Stature at Different Ages.βAnother factor that influences the types of stature is the age; or rather, that biological force which we call growth.
Growth is not an augmentation of volume, but an alteration in form; it constitutes the ontogenetic evolution, the development of the individual. The child, as it grows, is transformed. If we compare the skeleton of a new-born child with that of an adult, we discover profound differences between the relative proportions of the different parts. The child's head is enormously larger than that of the adult in proportion to its stature; and similarly, the chest measure is notably greater in the child. If we wish to compare the fundamental measurements of the new-born infant with those of the adult, we get the following figures, on a basis of 100 for the total stature:
Adult Child at birth Total stature = 100 Essential stature 52 68 Perimeter of thorax 50 70 Height of head 10 20Fig. 14.
Accordingly, the child has to acquire, in the course of its growth, not only the dimensions of the adult, but the harmony of his forms; that is, it must reach not only certain determined limits of dimension, but also a certain type of beauty.
Among the fundamental differences between the new-born child and the adult one of the first to be noted is the reciprocal difference of proportion between the two statures. The child is ultra-brachyscelous, that is, he presents a type of exaggerated brachyscelia, calling to mind the form of the human fΕtus, in which the limbs appear as little appendages of the trunk. In the course of growth, a successive alteration takes place between the reciprocal proportions of the two parts, so that the lower limbs, growing faster than the bust, tend to approach the total length of the latter. Godin has noted that during the years before puberty the lower limbs acquire greater dimensions, as compared with the bust, than are found in the fully developed individual; in other words, at this period a rapid growth takes place in the long bones of the lower limbs, and accordingly at this period of his life the individual passes through a stage of the macroscelous type. Immediately after puberty, there begins, in turn, an increase in the size of the bust, which regains its normal excess over the lower limbs, thus attaining the definite normal type of the adult individual. After the age of 17 years, by which time these metamorphoses have been completed, the individual may increase in stature, but the proportions between the parts will remain unaltered. In Fig. 14 we have a graphic representation of the relative proportions between the height of the bust and the length of limbs at different ages, the total stature being in every case reduced to 100. The upper portion of the lines represents the bust, and the lower portion the limbs, while the transverse line corresponding to the number 50 indicates one-half of the total stature. From such a table, it is easy to see how the bust, enormously in excess of the limbs at birth, gradually loses its preponderance.
It was drawn up from the following figures calculated by me:
TYPES OF STATURE ACCORDING TO AGE IN YEARS
At birth 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 68 65 63 62 60 59 57 56 55 55 54 53 53 52 52 51 51 52Godin furnishes the following figures, relating to the type of stature at the period preceding and following puberty:
RATIO OF SITTING STATURE TO TOTAL STATURE REDUCED TO SCALE OF 100 (GODIN)
Age 13Β½ 14 14Β½ 15 15Β½ 16 16Β½ 17 17Β½ Ratio 52 52 51 51 51 52 52 52 52Hrdlicka has calculated the index of stature for a thousand white American children and a hundred coloured, of both sexes, and has obtained the following figures, some of which, based upon an adequate number of subjects, (10-13 years) are what were to be expected, while others, owing to the scarcity of subjects (under 6 and above 15 years) are far less satisfactory:
PROPORTION BETWEEN THE SITTING STATURE AND THE TOTAL STATURE
(American Children)
Which goes to prove (in spite of the inaccuracies due to the numerical scarcity of coloured subjects of any age) that the females are more brachyscelous than the males; and that the blacks are more macroscelous than the whites.
The above table of indices of stature was worked out by Hrdlicka from the following measurements:
SITTING STATURE
Age in years Males, white Females, white Males, coloured Females, coloured 3 β β 476 476 4 β β β 534 5 551 576 597 571 6 595 608 616 607 7 631 621 630 625 8 644 635 659 671 9 672 663 679 680 10 684 687 697 695 11 711 718 718 703 12 728 734 797 792 13 751 770 737 767 14 764 809 787 808 15 777 825 753 819 16 839 824 795 β 17 864 850 β βTOTAL STATURE
Age in years Males, white Females, white Males, coloured Females, coloured 3 β β 783 839 4 β β β 906 5 961 1004 1044 985 6 1051 1060 1101 1091 7 1120 1086 1147 1127 8 1152 1130 1196 1260 9 1212 1187 1251 1257 10 1248 1267 1271 1295 11 1315 1304 1360 1307 12 1362 1357 1381 1467 13 1420 1431 1392 1477 14 1449 1495 1505 1559 15 1462 1535 1455 1545 16 1615 1498 1500 β 17 1654 β β β 18 β 1554 β βThe following chart, prepared by MacDonald, on the growth of the total stature and the sitting stature of male white children, born in America, gives a very clear idea of the rhythm of each of the two statures. The sitting stature increases quite slowly, and its greatest rate of growth is immediately after puberty (from 15 to 17 years) (Fig. 15)
Lastly, in order to make this phenomenon still more clear, I have reproduced an illustration given by Stratz, consisting of a series of outlined bodies of children representing the proportions of the body at different stages of growth; and not only the proportions between the bust and the lower limbs, but also between the various component parts of the bust, as for instance the head and trunk. The transverse lines indicate the changes in the principal levels: the head, the mammary glands, and the bust (Fig. 16).
Fig. 16.
The different types of stature at different ages deserve our most careful consideration, yet not from the point of view already set forth regarding the different types in the fully developed individual. In the present case for instance, we cannot say of a youth of sixteen that, because he is macroscelous he is a weakling as compared with a boy of ten who is brachyscelous; nor that a new-born child represents the maximum physical potentiality, because he is ultra-brachyscelous. Our standards must be completely altered, when we come to consider the various types as stages of transition between two normal forms, representing the evolution from one to the other. At each age we observe not only different proportions between the two fundamental parts of the stature, but physiological characteristics as well, biological signs of predispositions to certain determined maladies, and psychological characteristics differing from one another, and each typical of a particular age. From the purely physical and morphological point of view, for example, a child from its birth up to its second year, the period of maximum brachyscelia and consequent visceral predominance, is essentially a feeding animal. After this begins the development of psychic life, until finally, just before the attainment of full normal proportions, the function of reproduction is established, entailing certain definite characteristics upon the adult man or woman. In accordance with its type of stature, we see that the child from its birth to the end of the first year shows a maximum development of the adipose system together with a preponderance of the digestive organs; while the adolescent, in the period preceding puberty, shows in accordance with his macroscelous type of stature, and reduction in the relative proportion of his visceral organs, a characteristic loss of flesh.
These evolutionary changes in the course of growth having been once established, it remains for us to consider the individual variations. The alterations observed at the various ages, or rather, the notable characteristics of each age, serve as
Comments (0)