American library books » Literary Collections » A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕

Read book online «A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕».   Author   -   Arthur Berry



1 ... 38 39 40 41 42 43 44 45 46 ... 91
Go to page:
shewed that if a body moved round a central body, in such a way that the line joining the two bodies sweeps out equal areas in equal times, as in Kepler’s Second Law of planetary motion (chapter VII., § 141), then the moving body is acted on by an attraction directed exactly towards the central body; and further that if the path is an ellipse, with the central body in one focus, as in Kepler’s First Law of planetary motion, then this attraction must vary in different parts of the path as the inverse square of the distance between the two bodies. Kepler’s laws of planetary motion were in fact shewn to lead necessarily to the conclusions that the sun exerts on a planet an attraction inversely proportional to the square of the distance of the planet from the sun, and that such an attraction affords a sufficient explanation of the motion of the planet.

Once more, however, Newton published nothing and “threw his calculations by, being upon other studies.”

176. Nearly five years later the matter was again brought to his notice, on this occasion by Edmund Halley (chapter X., §§ 199-205), whose friendship played henceforward an important part in Newton’s life, and whose unselfish devotion to the great astronomer forms a pleasant contrast to the quarrels and jealousies prevalent at that time between so many scientific men. Halley, not knowing of Newton’s work in 1666, rediscovered, early in 1684, the law of the inverse square, as a consequence of Kepler’s Third Law, and shortly afterwards discussed with Wren and Hooke what was the curve in which a body would move if acted on by an attraction varying according to this law; but none of them could answer the question.103 Later in the year Halley visited Newton at Cambridge and learnt from him the answer. Newton had, characteristically enough, lost his previous calculation, but was able to work it out again and sent it to Halley a few months afterwards. This time fortunately his attention was not diverted to other topics; he worked out at once a number of other problems of motion, and devoted his usual autumn course of University lectures to the subject. Perhaps the most interesting of the new results was that Kepler’s Third Law, from which the law of the inverse square had been deduced in 1666, only on the supposition that the planets moved in circles, was equally consistent with Newton’s law when the paths of the planets were taken to be ellipses.

177. At the end of the year 1684 Halley went to Cambridge again and urged Newton to publish his results. In accordance with this request Newton wrote out, and sent to the Royal Society, a tract called Propositiones de Motu, the 11 propositions of which contained the results already mentioned and some others relating to the motion of bodies under attraction to a centre. Although the propositions were given in an abstract form, it was pointed out that certain of them applied to the case of the planets. Further pressure from Halley persuaded Newton to give his results a more permanent form by embodying them in a larger book. As might have been expected, the subject grew under his hands, and the great treatise which resulted contained an immense quantity of material not contained in the De Motu. By the middle of 1686 the rough draft was finished, and some of it was ready for press. Halley not only undertook to pay the expenses, but superintended the printing and helped Newton to collect the astronomical data which were necessary. After some delay in the press, the book finally appeared early in July 1687, under the title Philosophiae Naturalis Principia Mathematica.

178. The Principia, as it is commonly called, consists of three books in addition to introductory matter: the first book deals generally with problems of the motion of bodies, solved for the most part in an abstract form without special reference to astronomy; the second book deals with the motion of bodies through media which resist their motion, such as ordinary fluids, and is of comparatively small astronomical importance, except that in it some glaring inconsistencies in the Cartesian theory of vortices are pointed out; the third book applies to the circumstances of the actual solar system the results already obtained, and is in fact an explanation of the motions of the celestial bodies on Newton’s mechanical principles.

179. The introductory portion, consisting of “Definitions” and “Axioms, or Laws of Motion,” forms a very notable contribution to dynamics, being in fact the first coherent statement of the fundamental laws according to which the motions of bodies are produced or changed. Newton himself does not appear to have regarded this part of his book as of very great importance, and the chief results embodied in it, being overshadowed as it were by the more striking discoveries in other parts of the book, attracted comparatively little attention. Much of it must be passed over here, but certain results of special astronomical importance require to be mentioned.

Galilei, as we have seen (chapter VI., §§ 130, 133), was the first to enunciate the law that a body when once in motion continues to move in the same direction and at the same speed unless some cause is at work to make it change its motion. This law is given by Newton in the form already quoted in § 130, as the first of three fundamental laws, and is now commonly known as the First Law of Motion.

Galilei also discovered that a falling body moves with continually changing velocity, but with a uniform acceleration (chapter VI., § 133), and that this acceleration is the same for all bodies (chapter VI., § 116). The tendency of a body to fall having been generally recognised as due to the earth, Galilei’s discovery involved the recognition that one effect of one body on another may be an acceleration produced in its motion. Newton extended this idea by shewing that the earth produced an acceleration in the motion of the moon, and the sun in the motion of the planets, and was led to the general idea of acceleration in a body’s motion, which might be due in a variety of ways to the action of other bodies, and which could conveniently be taken as a measure of the effect produced by one body on another.

180. To these ideas Newton added the very important and difficult conception of mass.

If we are comparing two different bodies of the same material but of different sizes, we are accustomed to think of the larger one as heavier than the other. In the same way we readily think of a ball of lead as being heavier than a ball of wood of the same size. The most prominent idea connected with “heaviness” and “lightness” is that of the muscular effort required to support or to lift the body in question; a greater effort, for example, is required to hold the leaden ball than the wooden one. Again, the leaden ball if supported by an elastic string stretches it farther than does the wooden ball; or again, if they are placed in the scales of a balance, the lead sinks and the wood rises. All these effects we attribute to the “weight” of the two bodies, and the weight we are mostly accustomed to attribute in some way to the action of the earth on the bodies. The ordinary process of weighing a body in a balance shews, further, that we are accustomed to think of weight as a measurable quantity. On the other hand, we know from Galilei’s result, which Newton tested very carefully by a series of pendulum experiments, that the leaden and the wooden ball, if allowed to drop, fall with the same acceleration. If therefore we measure the effect which the earth produces on the two balls by their acceleration, then the earth affects them equally; but if we measure it by the power which they have of stretching strings, or by the power which one has of supporting the other in a balance, then the effect which the earth produces on the leaden ball is greater than that produced on the wooden ball. Taken in this way, the action of the earth on either ball may be spoken of as weight, and the weight of a body can be measured by comparing it in a balance with standard bodies.

The difference between two such bodies as the leaden and wooden ball may, however, be recognised in quite a different way. We can easily see, for example, that a greater effort is needed to set the one in motion than the other; or that if each is tied to the end of a string of given kind and whirled round at a given rate, the one string is more tightly stretched than the other. In these cases the attraction of the earth is of no importance, and we recognise a distinction between the two bodies which is independent of the attraction of the earth. This distinction Newton regarded as due to a difference in the quantity of matter or material in the two bodies, and to this quantity he gave the name of mass. It may fairly be doubted whether anything is gained by this particular definition of mass, but the really important step was the distinct recognition of mass as a property of bodies, of fundamental importance in dynamical questions, and capable of measurement.

Newton, developing Galilei’s idea, gave as one measurement of the action exerted by one body on another the product of the mass by the acceleration produced—a quantity for which he used different names, now replaced by force. The weight of a body was thus identified with the force exerted on it by the earth. Since the earth produces the same acceleration in all bodies at the same place, it follows that the masses of bodies at the same place are proportional to their weights; thus if two bodies are compared at the same place, and the weight of one (as shewn, for example, by a pair of scales) is found to be ten times that of the other, then its mass is also ten times as great. But such experiments as those of Richer at Cayenne (chapter VIII., § 161) shewed that the acceleration of falling bodies was less at the equator than in higher latitudes; so that if a body is carried from London or Paris to Cayenne, its weight is altered but its mass remains the same as before. Newton’s conception of the earth’s gravitation as extending as far as the moon gave further importance to the distinction between mass and weight; for if a body were removed from the earth to the moon, then its mass would be unchanged, but the acceleration due to the earth’s attraction would be 60 Ă— 60 times less, and its weight diminished in the same proportion.

Rules are also given for the effect produced on a body’s motion by the simultaneous action of two or more forces.104

A further principle of great importance, of which only very indistinct traces are to be found before Newton’s time, was given by him as the Third Law of Motion in the form: “To every action there is always an equal and contrary reaction; or, the mutual actions of any two bodies are always equal and oppositely directed.” Here action and reaction are to be interpreted primarily in the sense of force. If a stone rests on the hand, the force with which the stone presses the hand downwards is equal to that with which the hand presses the stone upwards; if the earth attracts a stone

1 ... 38 39 40 41 42 43 44 45 46 ... 91
Go to page:

Free e-book: «A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment