A Short History of Astronomy by Arthur Berry (best novels for students .TXT) đź“•
Read free book «A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕» - read online or download for free at americanlibrarybooks.com
- Author: Arthur Berry
- Performer: -
Read book online «A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕». Author - Arthur Berry
In the same section Newton discussed also at some length the nature of comets and in particular the structure of their tails, arriving at the conclusion, which is in general agreement with modern theories (chapter XIII., § 304), that the tail is formed by a stream of finely divided matter of the nature of smoke, rising up from the body of the comet, and so illuminated by the light of the sun when tolerably near it as to become visible.
191. The Principia was published, as we have seen, in 1687. Only a small edition seems to have been printed, and this was exhausted in three or four years. Newton’s earlier discoveries, and the presentation to the Royal Society of the tract De Motu (§ 177), had prepared the scientific world to look for important new results in the Principia, and the book appears to have been read by the leading Continental mathematicians and astronomers, and to have been very warmly received in England. The Cartesian philosophy had, however, too firm a hold to be easily shaken; and Newton’s fundamental principle, involving as it did the idea of an action between two bodies separated by an interval of empty space, seemed impossible of acceptance to thinkers who had not yet fully grasped the notion of judging a scientific theory by the extent to which its consequences agree with observed facts. Hence even so able a man as Huygens (chapter VIII., §§ 154, 157, 158), regarded the idea of gravitation as “absurd,” and expressed his surprise that Newton should have taken the trouble to make such a number of laborious calculations with no foundation but this principle, a remark which shewed Huygens to have had no conception that the agreement of the results of these calculations with actual facts was proof of the soundness of the principle. Personal reasons also contributed to the Continental neglect of Newton’s work, as the famous quarrel between Newton and Leibniz as to their respective claims to the invention of what Newton called fluxions and Leibniz the differential method (out of which the differential and integral calculus have developed) grew in intensity and fresh combatants were drawn into it on both sides. Half a century in fact elapsed before Newton’s views made any substantial progress on the Continent (cf. chapter XI., § 229). In our country the case was different; not only was the Principia read with admiration by the few who were capable of understanding it, but scholars like Bentley, philosophers like Locke, and courtiers like Halifax all made attempts to grasp Newton’s general ideas, even though the details of his mathematics were out of their range. It was moreover soon discovered that his scientific ideas could be used with advantage as theological arguments.
192. One unfortunate result of the great success of the Principia was that Newton was changed from a quiet Cambridge professor, with abundant leisure and a slender income, into a public character, with a continually increasing portion of his time devoted to public business of one sort or another.
Just before the publication of the Principia he had been appointed one of the representatives of his University to defend its rights against the encroachments of James II., and two years later he sat as member for the University in the Convention Parliament, though he retired after its dissolution.
Notwithstanding these and many other distractions, he continued to work at the theory of gravitation, paying particular attention to the lunar theory, a difficult subject with his treatment of which he was never quite satisfied.110 He was fortunately able to obtain from time to time first-rate observations of the moon (as well as of other bodies) from the Astronomer Royal Flamsteed (chapter X., §§ 197-8), though Newton’s continual requests and Flamsteed’s occasional refusals led to strained relations at intervals. It is possible that about this time Newton contemplated writing a new treatise, with more detailed treatment of various points discussed in the Principia; and in 1691 there was already some talk of a new edition of the Principia, possibly to be edited by some younger mathematician. In any case nothing serious in this direction was done for some years, perhaps owing to a serious illness, apparently some nervous disorder, which attacked Newton in 1692 and lasted about two years. During this illness, as he himself said, “he had not his usual consistency of mind,” and it is by no means certain that he ever recovered his full mental activity and power.
[To face p. 139.
Soon after recovering from this illness he made some preparations for a new edition of the Principia, besides going on with the lunar theory, but the work was again interrupted in 1695, when he received the valuable appointment of Warden to the Mint, from which he was promoted to the Mastership four years later. He had, in consequence, to move to London (1696), and much of his time was henceforward occupied by official duties. In 1701 he resigned his professorship at Cambridge, and in the same year was for the second time elected the Parliamentary representative of the University. In 1703 he was chosen President of the Royal Society, an office which he held till his death, and in 1705 he was knighted on the occasion of a royal visit to Cambridge.
During this time he published (1704) his treatise on Optics, the bulk of which was probably written long before, and in 1709 he finally abandoned the idea of editing the Principia himself, and arranged for the work to be done by Roger Cotes (1682-1716), the brilliant young mathematician whose untimely death a few years later called from Newton the famous eulogy, “If Mr. Cotes had lived we might have known something.” The alterations to be made were discussed in a long and active correspondence between the editor and author, the most important changes being improvements and additions to the lunar theory, and to the discussions of precession and of comets, though there were also a very large number of minor changes; and the new edition appeared in 1713. A third edition, edited by Pemberton, was published in 1726, but this time Newton, who was over 80, took much less part, and the alterations were of no great importance. This was Newton’s last piece of scientific work, and his death occurred in the following year (March 3rd, 1727).
193. It is impossible to give an adequate idea of the immense magnitude of Newton’s scientific discoveries except by a free use of the mathematical technicalities in which the bulk of them were expressed. The criticism passed on him by his personal enemy Leibniz that, “Taking mathematics from the beginning of the world to the time when Newton lived, what he had done was much the better half,” and the remark of his great successor Lagrange (chapter XI., § 237), “Newton was the greatest genius that ever existed, and the most fortunate, for we cannot find more than once a system of the world to establish,” shew the immense respect for his work felt by those who were most competent to judge it.
With these magnificent eulogies it is pleasant to compare Newton’s own grateful recognition of his predecessors, “If I have seen further than other men, it is because I have stood upon the shoulders of the giants,” and his modest estimate of his own performances:—
“I do not know what I may appear to the world; but to myself I seem to have been only like a boy playing on the seashore, and diverting myself in now and then finding a smoother pebble or a prettier shell than ordinary, whilst the great ocean of truth lay all undiscovered before me.”
194. It is sometimes said, in explanation of the difference between Newton’s achievements and those of earlier astronomers, that whereas they discovered how the celestial bodies moved, he shewed why the motions were as they were, or, in other words, that they described motions while he explained them or ascertained their cause. It is, however, doubtful whether this distinction between How and Why, though undoubtedly to some extent convenient, has any real validity. Ptolemy, for example, represented the motion of a planet by a certain combination of epicycles; his scheme was equivalent to a particular method of describing the motion; but if any one had asked him why the planet would be in a particular position at a particular time, he might legitimately have answered that it was so because the planet was connected with this particular system of epicycles, and its place could be deduced from them by a rigorous process of calculation. But if any one had gone further and asked why the planet’s epicycles were as they were, Ptolemy could have given no answer. Moreover, as the system of epicycles differed in some important respects from planet to planet, Ptolemy’s system left unanswered a number of questions which obviously presented themselves. Then Coppernicus gave a partial answer to some of these questions. To the question why certain of the planetary motions, corresponding to certain epicycles, existed, he would have replied that it was because of certain motions of the earth, from which these (apparent) planetary motions could be deduced as necessary consequences. But the same information could also have been given as a mere descriptive statement that the earth moves in certain ways and the planets move in certain other ways. But again, if Coppernicus had been asked why the earth rotated on its axis, or why the planets revolved round the sun, he could have given no answer; still less could he have said why the planets had certain irregularities in their motions, represented by his epicycles.
Kepler again described the same motions very much more simply and shortly by means of his three laws of planetary motion; but if any one had asked why a planet’s motion varied in certain ways, he might have replied that it was because all planets moved in ellipses so as to sweep out equal areas in equal times. Why this was so Kepler was unable to say, though he spent much time in speculating on the subject. This question was, however, answered by Newton, who shewed that the planetary motions were necessary consequences of his law of gravitation and his laws of motion. Moreover from these same laws, which were extremely simple in statement and few in number, followed as necessary consequences the motion of the moon and many other astronomical phenomena, and also certain familiar terrestrial phenomena, such as the behaviour of falling bodies; so that a large number of groups of observed facts, which had hitherto been disconnected from one another, were here brought into connection as necessary consequences of certain fundamental laws. But again Newton’s view of the solar system might equally well be put as a mere descriptive statement that the planets, etc., move with accelerations of certain magnitudes towards one another. As, however, the actual position or rate of motion of a planet at any time can only be deduced by an extremely elaborate calculation from Newton’s laws, they are not at all obviously equivalent to the observed celestial motions, and we do not therefore at all easily think of them as being merely a description.
Again Newton’s laws at once suggest
Comments (0)