Pedagogical Anthropology by Maria Montessori (best novels of all time TXT) 📕
Read free book «Pedagogical Anthropology by Maria Montessori (best novels of all time TXT) 📕» - read online or download for free at americanlibrarybooks.com
- Author: Maria Montessori
- Performer: -
Read book online «Pedagogical Anthropology by Maria Montessori (best novels of all time TXT) 📕». Author - Maria Montessori
[41] The above elucidation and illustrations of the face are taken from Manouvrier, Cephalométrie Anthropologique.
[42] From Thulié, Le Dressage des jeunes dégénérés, page 633.
[43] Binet, Le croissance du crâne et de la face chez les normaux entre 4 et 18 ans.
[44] Charles Darwin, The Expression of Emotions in Man and Animals.
[45] Charles Darwin, Op. cit.
[46] Sante de Sanctis, La Mimica del Pensiero (The Expression of Thought).
CHAPTER IIITHE THORAX
We have already had occasion to point out, in connection with the types of stature, the importance of the thorax.
The relation of the thoracic perimeter (circumference of the chest) to the total stature (see chapter on Technique) was called by Goldstein the index of life, in order to indicate that the organic resistance of any individual depends upon the proportional relation between the thorax and the whole body; whoever has a narrow chest is liable to pulmonary tuberculosis, and in his physiological entirety is a weakling (see chapter on Macroscelous and Brachyscelous Types).
Anatomical Parts.—Anatomically the thorax is determined in height by the twelve dorsal or thoracic vertebræ, which are characterised by having a transverse apophysis, which articulates with the twelve pairs of ribs, forming the thoracic cage, or chest.
The first seven pairs of ribs articulate in front, by means of cartilages, with the lateral margins of a flat bone, the sternum or breast-bone, which is formed of three pieces: the manubrium uppermost, then the corpus, then, lowest of all, the ensiform (sword-shaped) process.
The manubrium and the corpus form, at their juncture, an angle more or less marked, according to the individual, and the lateral articulation of the second rib corresponds to this angle. In the new-born child the sternum is a cartilage with points of ossification arranged longitudinally like the beads of a rosary. The seventh vertebra articulates laterally at the point at which the ensiform process is attached to the corpus of the sternum. The next three ribs (8th, 9th and 10th) are articulated together and with the seventh by means of cartilaginous arches; the last two pairs of ribs (11th and 12th) are free or floating. At the top, the thoracic cage is reinforced by the thoracic girdle, which serves also to afford articulation for the upper limbs, and which consists of the clavicles, in front, and of the scapulæ, behind. The clavicles are long bones placed in an almost horizontal position above the thorax, and they determine the width of the chest; at the inner extremity they articulate with the manubrium of the sternum and at the outer extremity they are attached to the acromial process of the scapulæ. The scapulæ are flat bones which are attached to the posterior surface of the thoracic frame, on which they are freely movable, covering a tract extending from the second to the seventh rib. At their upper and outer extremity they are provided with two bony processes; namely, the acromion, already mentioned, which contains the points of maximum width of the shoulders, and the coracoid process, which terminates anteriorly and, together with the acromion, overhangs the articulation of the humerus with the body of the scapula.
Powerful muscles clothe the thoracic frame, serving partly in the movements of respiration and partly in the movements of the upper limbs. It may suffice to mention, among the muscles situated posteriorly, the cucullaris, the great dorsal (m. longissimus dorsi), the rhomboids of the scapulæ (m. rhomboideus major and minor), and the serratus posterior of the ribs; anteriorly, the large and small pectoral and the great serratus; beside which there are the intercostal muscles, extending from rib to rib and taking part in the movements of respiration. But the most important muscle is the diaphragm, which completely closes the thoracic cavity, rising into it in a convex vault and separating it from the abdomen; this constitutes the most active of all the muscles which participate in the movements of respiration. The thoracic cavity, thus determined, encloses the two most important viscera of vegetative life—the heart and the lungs.
The heart is a muscle shaped like a pear or cone, having its base turned upward, and its apex or point turned downward and outward toward the left, corresponding to the fifth intercostal space; it is divided, as is well known, into four cavities, and constitutes the great motor power of the circulation of the blood. The lungs are two in number, right and left, and surround the heart, completely filling the thoracic cavity. The lungs are divided into superimposed lobes, three in the right and two in the left lung; they are composed essentially of infinitely small ramifications of the bronchi, resolving into tiny series of chambers, the pulmonary alveoli or air-cells. These alveoli, consisting of a single layer of extremely small cells, are surrounded by a dense network of capillary tubes, through which takes place the interchange of oxygen and carbon dioxide. It has been calculated that if we should estimate and sum up the internal surfaces of the pulmonary alveoli, or, what comes to the same thing, if we should spread out and join together the alveolar walls of the lungs, they would have a superficial area of 200 square metres. This area might be compared to the foliage of a great human tree (respiratory surface).
Physiological and Hygienic Aspect.—The importance of the thorax is physiological, because it contains the highly important viscera of vegetative life; but this importance is especially associated with the lungs. The lungs are the organs that acquire the oxygen from the outside environment, and this oxygen, when taken up by the hemoglobin in the blood, will serve to oxygenate the tissues of the entire organism, and thus aid in the processes of cellular metabolism. A large supply of oxygen stimulates this interchange of matter, not only because the organism as a whole is enriched in the substance essential to this process (oxygen), but because the heart responds to the increased activity of the lungs by more energetic pulsations calculated to set the blood circulating in far greater quantities. It is no exaggeration to say that our whole physiological life is enclosed within the thorax, because the digestive system does nothing more than prepare a blood that is unfitted to irrigate the tissues for the purpose of supplying them with nutriment; it is only after this blood has passed through the lungs that it is transformed into oxygenated blood and is adapted to assimilation. Consequently the intestines prepare nothing more than the raw material, and it is the lungs which perform the service of perfecting it; while the heart drives it through its circuit into contact with all the tissues of the organism.
Whoever has inadequate lungs is for that reason alone a person who necessarily receives insufficient nutriment (thin and weak macroscele), and frequently is also a melancholiac. Melancholia accompanies every form of physiological decadence. On the contrary, persons with ample lungs are generally serene of spirit and joyous. In fact, the emotion of joy is at the same time both the cause and the consequence of an active circulation of oxygenated blood (florid or ruddy complexion).
Certain experiments conducted with birds have proved that if free oxygen is introduced under an air-bell in which the birds have been enclosed, they gradually become more and more excited, singing and fluttering as if possessed by a frenzy of joyousness. It is a fact that we often rid ourselves of a fit of melancholy by taking a walk in the open air; persons possessed of good lungs feel within themselves a vital potentiality that perceptibly aids them to make what we call an "effort of will"; when sorrow befalls them, or overexertion has exhausted their strength, persons of this type feel some force spring up within them that seems to give them fresh hope and courage. It is their oxygenated blood, which neither weariness nor depression of spirit can stay in its luxuriant course; the man of weak lungs, on the contrary, is mentally depressed, because his physiological life has slowed down; and, instead of aiding him, it is his physiological life which demands of him a genuine effort of will to reestablish its equilibrium.
Accordingly, those persons who have a well-developed chest are certainly the healthiest and the happiest.
But this is not the only pulmonary function; the lungs are also the organs of speech. In fact, while speech is manufactured in the brain and the cerebral nerves that stimulate the organs of the spoken word, it requires also its "driving power," that is to say, air, in order to obtain utterance; and it is the lungs to which singers and speakers alike owe the physical strength of their voice. Even the respiratory rhythm has a great influence upon speech.
The spoken word requires a most complicated mechanism, and among the details of this mechanism, by no means the least important are the acts of inspiration, by which the air is received into the lungs, and of expiration, by which it is expelled, simultaneously with all the other movements producing speech. Indeed, we know that when speech is further complicated by the act of singing, it becomes necessary to study special rules for breathing; in short, to educate the voice.
Now, why do we not also educate the voice for its ordinary task of the spoken language? Speech is one of the marvels that characterise man, and also one of the most difficult spontaneous creations that have been accomplished by nature. Through the voice, the lawyer defends the innocent, the teacher educates the new generations, the mother recalls her erring son to the path of virtue, lovers unite their souls, and all humanity interchanges ideas. If intelligence is the triumph of life, the spoken word is the marvellous means by which this intelligence is manifested.
We trouble ourselves to educate the voice only for the purpose of singing, and neglect the spoken word. We do not stop to think that singing appeals only to the senses and emotions, while speech appeals to the emotions and the intellect, and therefore charms and at the same time convinces.
Anyone who has heard that wonderfully gifted speaker, Ofelia Mazzoni, expounding our great poets to the labouring classes at the People's University in Milan, rousing the slumbering intelligence of the working man, will understand what an immense educative force we are neglecting.
In a century in which we speak of an intellectual reawakening and a brotherhood of man, we have forgotten the voice! Yet in this new era of humanity that is learning brotherly love and striving for peace, the voice plays a part analogous to that of the trumpet-call in the centuries consecrated to war.
As a matter of fact, our schools so far neglect defects of speech that it is not uncommon to hear a stammerer undergoing examinations for a degree in jurisprudence. The fact that an otherwise cultured man lisps or stammers is treated by us as quite an indifferent matter, just as among savage tribes a king may have unclean nails without anyone observing the fact.
Yet it is now known that stammering may usually be cured by a systematic training in the art of breathing.
Respiratory gymnastics ought to constitute one of the principal courses of instruction in schools for children. I have introduced it into the "Children's Houses," among children between the ages of four and six, combining it with a special instruction in written language (letters of the alphabet), designed to educate the movements of the organs of speech, without worrying or tiring the children, and this method has borne such good
Comments (0)