A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕
Read free book «A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕» - read online or download for free at americanlibrarybooks.com
- Author: Arthur Berry
- Performer: -
Read book online «A Short History of Astronomy by Arthur Berry (best novels for students .TXT) 📕». Author - Arthur Berry
266. The question of the comparative brightness of stars was, as we have seen (§ 258), of importance in connection with Herschel’s attempts to estimate their relative distances from the earth and their arrangement in space; it also presented itself in connection with inquiries into the variability of the light of stars. Two remarkable cases of variability had been for some time known. A star in the Whale (ο Ceti or Mira) had been found to be at times invisible to the naked eye and at other times to be conspicuous; a Dutch astronomer, Phocylides Holwarda (1618-1651), first clearly recognised its variable character (1639), and Ismael Boulliau or Bullialdus (1605-1694) in 1667 fixed its period at about eleven months, though it was found that its fluctuations were irregular both in amount and in period. Its variations formed the subject of the first paper published by Herschel in the Philosophical Transactions (1780). An equally remarkable variable star is that known as Algol (or β Persei), the fluctuations of which were found to be performed with almost absolute regularity. Its variability had been noted by Geminiano Montanari (1632-1687) in 1669, but the regularity of its changes was first detected in 1783 by John Goodricke (1764-1786), who was soon able to fix its period at very nearly 2 days 20 hours 49 minutes. Algol, when faintest, gives about one-quarter as much light as when brightest, the change from the first state to the second being effected in about ten hours; whereas Mira varies its light several hundredfold, but accomplishes its changes much more slowly.
At the beginning of Herschel’s career these and three or four others of less interest were the only stars definitely recognised as variable, though a few others were added soon afterwards. Several records also existed of so-called “new” stars, which had suddenly been noticed in places where no star had previously been observed, and which for the most part rapidly became inconspicuous again (cf. chapter II., § 42; chapter V., § 100; chapter VII., § 138); such stars might evidently be regarded as variable stars, the times of greatest brightness occurring quite irregularly or at long intervals. Moreover various records of the brightness of stars by earlier astronomers left little doubt that a good many must have varied sensibly in brightness. For example, a small star in the Great Bear (close to the middle star of the “tail”) was among the Arabs a noted test of keen sight, but is perfectly visible even in our duller climate to persons with ordinary eyesight; and Castor, which appeared the brighter of the two Twins to Bayer when he published his Atlas (1603), was in the 18th century (as now) less bright than Pollux.
Herschel made a good many definite measurements of the amounts of light emitted by stars of various magnitudes, but was not able to carry out any extensive or systematic measurements on this plan. With a view to the future detection of such changes of brightness as have just been mentioned, he devised and carried out on a large scale the extremely simple method of sequences. If a group of stars are observed and their order of brightness noted at two different times, then any alteration in the order will shew that the brightness of one or more has changed. So that if a number of stars are observed in sets in such a way that each star is recorded as being less bright than certain stars near it and brighter than certain other stars, materials are thereby provided for detecting at any future time any marked amount of variation of brightness. Herschel prepared on this plan, at various times between 1796 and 1799, four catalogues of comparative brightness based on naked-eye observations and comprising altogether about 3,000 stars. In the course of the work a good many cases of slight variability were noticed; but the most interesting discovery of this kind was that of the variability of the well-known star α Herculis, announced in 1796. The period was estimated at 60 days, and the star thus seemed to form a connecting link between the known variables which like Algol had periods of a very few days and those (of which Mira was the best known) with periods of some hundreds of days. As usual, Herschel was not content with a mere record of observations, but attempted to explain the observed facts by the supposition that a variable star had a rotation and that its surface was of unequal brightness.
267. The novelty of Herschel’s work on the fixed stars, and the very general character of the results obtained, have caused this part of his researches to overshadow in some respects his other contributions to astronomy.
Though it was no part of his plan to contribute to that precise knowledge of the motions of the bodies of the solar system which absorbed the best energies of most of the astronomers of the 18th century—whether they were observers or mathematicians—he was a careful and successful observer of the bodies themselves.
His discoveries of Uranus, of two of its satellites, and of two new satellites of Saturn have been already mentioned in connection with his life (§§ 253, 255). He believed himself to have seen also (1798) four other satellites of Uranus, but their existence was never satisfactorily verified; and the second pair of satellites now known to belong to Uranus, which were discovered by Lassell in 1847 (chapter XIII., § 295), do not agree in position and motion with any of Herschel’s four. It is therefore highly probable that they were mere optical illusions due to defects of his mirror, though it is not impossible that he may have caught glimpses of one or other of Lassell’s satellites and misinterpreted the observations.
Saturn was a favourite object of study with Herschel from the very beginning of his astronomical career, and seven papers on the subject were published by him between 1790 and 1806. He noticed and measured the deviation of the planet’s form from a sphere (1790); he observed various markings on the surface of the planet itself, and seems to have seen the inner ring, now known from its appearance as the crape ring (chapter XIII., § 295), though he did not recognise its nature. By observations of some markings at some distance from the equator he discovered (1790) that Saturn rotated on an axis, and fixed the period of rotation at about 10 h. 16 m. (a period differing only by about 2 minutes from modern estimates), and by similar observations of the ring (1790) concluded that it rotated in about 10-1∕2 hours, the axis of rotation being in each case perpendicular to the plane of the ring. The satellite Japetus, discovered by Cassini in 1671 (chapter VIII., § 160), had long been recognised as variable in brightness, the light emitted being several times as much at one time as at another. Herschel found that these variations were not only perfectly regular, but recurred at an interval equal to that of the satellite’s period of rotation round its primary (1792), a conclusion which Cassini had thought of but rejected as inconsistent with his observations. This peculiarity was obviously capable of being explained by supposing that different portions of Japetus had unequal power of reflecting light, and that like our moon it turned on its axis once in every revolution, in such a way as always to present the same face towards its primary, and in consequence each face in turn to an observer on the earth. It was natural to conjecture that such an arrangement was general among satellites, and Herschel obtained (1797) some evidence of variability in the satellites of Jupiter, which appeared to him to support this hypothesis.
Herschel’s observations of other planets were less numerous and important. He rightly rejected the supposed observations by Schroeter (§ 271) of vast mountains on Venus, and was only able to detect some indistinct markings from which the planet’s rotation on an axis could be somewhat doubtfully inferred. He frequently observed the familiar bright bands on Jupiter commonly called belts, which he was the first to interpret (1793) as bands of cloud. On Mars he noted the periodic diminution of the white caps on the two poles, and observed how in these and other respects Mars was of all planets the one most like the earth.
268. Herschel made also a number of careful observations on the sun, and based on them a famous theory of its structure. He confirmed the existence of various features of the solar surface which had been noted by the earlier telescopists such as Galilei, Scheiner, and Hevel, and added to them in some points of detail. Since Galilei’s time a good many suggestions as to the nature of spots had been thrown out by various observers, such as that they were clouds, mountain-tops, volcanic products, etc., but none of these had been supported by any serious evidence. Herschel’s observations of the appearances of spots suggested to him that they were depressions in the surface of the sun, a view which derived support from occasional observations of a spot when passing over the edge of the sun as a distinct depression or notch there. Upon this somewhat slender basis of fact he constructed (1795) an elaborate theory of the nature of the sun, which attracted very general notice by its ingenuity and picturesqueness and commanded general assent in the astronomical world for more than half a century. The interior of the sun was supposed to be a cold dark solid body, surrounded by two cloud-layers, of which the outer was the photosphere or ordinary surface of the sun, intensely hot and luminous, and the inner served as a fire-screen to protect the interior. The umbra (chapter VI., § 124) of a spot was the dark interior seen through an opening in the clouds, and the penumbra corresponded to the inner cloud-layer
Comments (0)