A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) π
3. Some of the first principles of geometry are axioms, and these are not hypothetical 256
4. --but are experimental truths 258
5. An objection answered 261
6. Dr. Whewell's opinions on axioms examined 264
CHAPTER VI.
The same Subject continued.
Sec. 1. All deductive sciences are inductive 281
2. The propositions of the science of number are not verbal, but generalizations from experience 284
3. In what sense hypothetical 289
4. The characteristic property of demonstrative science is to be hypothetical 290
5. Definition of demonstrative evidence 292
CHAPTER VII.
Examination of some Opinions opposed to the preceding doctrines.
Sec. 1. Doctrine of the Universal Postulate 294
2. The test of inconceivability does not
Read free book Β«A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: John Stuart Mill
- Performer: -
Read book online Β«A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πΒ». Author - John Stuart Mill
I hope to be pardoned for adding, that Dr. Whewell himself has both confirmed by his testimony the effect of habitual association in giving to an experimental truth the appearance of a necessary one, and afforded a striking instance of that remarkable law in his own person. In his Philosophy of the Inductive Sciences he continually asserts, that propositions which not only are not self-evident, but which we know to have been discovered gradually, and by great efforts of genius and patience, have, when once established, appeared so self-evident that, but for historical proof, it would have been impossible to conceive that they had not been recognised from the first by all persons in a sound state of their faculties. "We now despise those who, in the Copernican controversy, could not conceive the apparent motion of the sun on the heliocentric hypothesis; or those who, in opposition to Galileo, thought that a uniform force might be that which generated a velocity proportional to the space; or those who held there was something absurd in Newton's doctrine of the different refrangibility of differently coloured rays; or those who imagined that when elements combine, their sensible qualities must be manifest in the compound; or those who were reluctant to give up the distinction of vegetables into herbs, shrubs, and trees. We cannot help thinking that men must have been singularly dull of comprehension, to find a difficulty in admitting what is to us so plain and simple. We have a latent persuasion that we in their place should have been wiser and more clear-sighted; that we should have taken the right side, and given our assent at once to the truth. Yet in reality such a persuasion is a mere delusion. The persons who, in such instances as the above, were on the losing side, were very far, in most cases, from being persons more prejudiced, or stupid, or narrow-minded, than the greater part of mankind now are; and the cause for which they fought was far from being a manifestly bad one, till it had been so decided by the result of the war.... So complete has been the victory of truth in most of these instances, that at present we can hardly imagine the struggle to have been necessary. The very essence of these triumphs is, that they lead us to regard the views we reject as not only false but inconceivable."[29]
This last proposition is precisely what I contend for; and I ask no more, in order to overthrow the whole theory of its author on the nature of the evidence of axioms. For what is that theory? That the truth of axioms cannot have been learnt from experience, because their falsity is inconceivable. But Dr. Whewell himself says, that we are continually led, by the natural progress of thought, to regard as inconceivable what our forefathers not only conceived but believed, nay even (he might have added) were unable to conceive the reverse of. He cannot intend to justify this mode of thought: he cannot mean to say, that we can be right in regarding as inconceivable what others have conceived, and as self-evident what to others did not appear evident at all. After so complete an admission that inconceivableness is an accidental thing, not inherent in the phenomenon itself, but dependent on the mental history of the person who tries to conceive it, how can he ever call upon us to reject a proposition as impossible on no other ground than its inconceivableness? Yet he not only does so, but has unintentionally afforded some of the most remarkable examples which can be cited of the very illusion which he has himself so clearly pointed out. I select as specimens, his remarks on the evidence of the three laws of motion, and of the atomic theory.
With respect to the laws of motion, Dr. Whewell says: "No one can doubt that, in historical fact, these laws were collected from experience. That such is the case, is no matter of conjecture. We know the time, the persons, the circumstances, belonging to each step of each discovery."[30] After this testimony, to adduce evidence of the fact would be superfluous. And not only were these laws by no means intuitively evident, but some of them were originally paradoxes. The first law was especially so. That a body, once in motion, would continue for ever to move in the same direction with undiminished velocity unless acted upon by some new force, was a proposition which mankind found for a long time the greatest difficulty in crediting. It stood opposed to apparent experience of the most familiar kind, which taught that it was the nature of motion to abate gradually, and at last terminate of itself. Yet when once the contrary doctrine was firmly established, mathematicians, as Dr. Whewell observes, speedily began to believe that laws, thus contradictory to first appearances, and which, even after full proof had been obtained, it had required generations to render familiar to the minds of the scientific world, were under "a demonstrable necessity, compelling them to be such as they are and no other;" and he himself, though not venturing "absolutely to pronounce" that all these laws "can be rigorously traced to an absolute necessity in the nature of things,"[31] does actually so think of the law just mentioned; of which he says: "Though the discovery of the first law of motion was made, historically speaking, by means of experiment, we have now attained a point of view in which we see that it might have been certainly known to be true, independently of experience."[32] Can there be a more striking exemplification than is here afforded, of the effect of association which we have described? Philosophers, for generations, have the most extraordinary difficulty in putting certain ideas together; they at last succeed in doing so; and after a sufficient repetition of the process, they first fancy a natural bond between the ideas, then experience a growing difficulty, which at last, by the continuation of the same progress, becomes an impossibility, of severing them from one another. If such be the progress of an experimental conviction of which the date is of yesterday, and which is in opposition to first appearances, how must it fare with those which are conformable to appearances familiar from the first dawn of intelligence, and of the conclusiveness of which, from the earliest records of human thought, no sceptic has suggested even a momentary doubt?
The other instance which I shall quote is a truly astonishing one, and may be called the reductio ad absurdum of the theory of inconceivableness. Speaking of the laws of chemical composition, Dr. Whewell says:[33] "That they could never have been clearly understood, and therefore never firmly established, without laborious and exact experiments, is certain; but yet we may venture to say, that being once known, they possess an evidence beyond that of mere experiment. For how in fact can we conceive combinations, otherwise than as definite in kind and quality? If we were to suppose each element ready to combine with any other indifferently, and indifferently in any quantity, we should have a world in which all would be confusion and indefiniteness. There would be no fixed kinds of bodies. Salts, and stones, and ores, would approach to and graduate into each other by insensible degrees. Instead of this, we know that the world consists of bodies distinguishable from each other by definite differences, capable of being classified and named, and of having general propositions asserted concerning them. And as we cannot conceive a world in which this should not be the case, it would appear that we cannot conceive a state of things in which the laws of the combination of elements should not be of that definite and measured kind which we have above asserted."
That a philosopher of Dr. Whewell's eminence should gravely assert that we cannot conceive a world in which the simple elements should combine in other than definite proportions; that by dint of meditating on a scientific truth, the original discoverer of which was still living, he should have rendered the association in his own mind between the idea of combination and that of constant proportions so familiar and intimate as to be unable to conceive the one fact without the other; is so signal an instance of the mental law for which I am contending, that one word more in illustration must be superfluous.
In the latest and most complete elaboration of his metaphysical system (the Philosophy of Discovery), as well as in the earlier discourse on the Fundamental Antithesis of Philosophy, reprinted as an appendix to that work, Dr. Whewell, while very candidly admitting that his language was open to misconception, disclaims having intended to say that mankind in general can now perceive the law of definite proportions in chemical combination to be a necessary truth. All he meant was that philosophical chemists in a future generation may possibly see this. "Some truths may be seen by intuition, but yet the intuition of them may be a rare and a difficult attainment."[34] And he explains that the inconceivableness which, according to his theory, is the test of axioms, "depends entirely upon the clearness of the Ideas which the axioms involve. So long as those Ideas are vague and indistinct, the contrary of an Axiom may be assented to, though it cannot be distinctly conceived. It may be assented to, not because it is possible, but because we do not see clearly what is possible. To a person who is only beginning to think geometrically, there may appear nothing absurd in the assertion, that two straight lines may inclose a space. And in the same manner, to a person who is only beginning to think of mechanical truths, it may not appear to be absurd, that in mechanical processes, Reaction should be greater or less than Action; and so, again, to a person who has not thought steadily about Substance, it may not appear inconceivable, that by chemical operations, we should generate new matter, or destroy matter which already exists."[35] Necessary truths, therefore, are not those of which we cannot conceive, but "those of which we cannot distinctly conceive, the contrary."[36] So long
Comments (0)