General Science by Bertha May Clark (best historical fiction books of all time TXT) π
[Illustration: FIG. 9.--Determining one of the fixed points of a thermometer.]
The Centigrade thermometer, in use in foreign countries and in all scientific work, is similar to the Fahrenheit except that the fixed points are marked 100Β° and 0Β°, and the interval between the points is divided into 100 equal parts instead of into 180.
The boiling point of
Read free book Β«General Science by Bertha May Clark (best historical fiction books of all time TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Bertha May Clark
- Performer: -
Read book online Β«General Science by Bertha May Clark (best historical fiction books of all time TXT) πΒ». Author - Bertha May Clark
Further, water assists in the removal of the daily bodily wastes, and thus rids the system of foul and poisonous substances.
The human body itself consists largely of water; indeed, about two thirds of our own weight is water. The constant replenishing of this large quantity is necessary to life, and a considerable amount of the necessary supply is furnished by foods, particularly the fruits and vegetables.
But while the supply furnished by the daily food is considerable, it is by no means sufficient, and should be supplemented by good drinking water.
69. Water and its Dangers. Our drinking water comes from far and near, and as it moves from place to place, it carries with it in solution or suspension anything which it can find, whether it be animal, vegetable, or mineral matter. The power of water to gather up matter is so great that the average drinking water contains 20 to 90 grains of solid matter per gallon; that is, if a gallon of ordinary drinking water is left to evaporate, a residue of 20 to 90 grains will be left. (See Laboratory Manual.) As water runs down a hill slope (Fig. 37), it carries with it the filth gathered from acres of land; carries with it the refuse of stable, barn, and kitchen; and too often this impure surface water joins the streams which supply our cities. Lakes and rivers which furnish drinking water should be carefully protected from surface draining; that is, from water which has flowed over the land and has thus accumulated the waste of pasture and stable and, it may be, of dumping ground.
FIG. 37.βAs water flows over the land, it gathers filth and disease germs.
It is not necessary that water should be absolutely free from all foreign substances in order to be safe for daily use in drinking; a limited amount of mineral matter is not injurious and may sometimes be really beneficial. It is the presence of animal and vegetable matter that causes real danger, and it is known that typhoid fever is due largely to such impurities present in the drinking water.
70. Methods of Purification. Water is improved by any of the following methods:β
(a) Boiling. The heat of boiling destroys animal and vegetable germs. Hence water that has been boiled a few minutes is safe to use. This is the most practical method of purification in the home, and is very efficient. The boiled water should be kept in clean, corked bottles; otherwise foreign substances from the atmosphere reΓ«nter the water, and the advantage gained from boiling is lost.
(b) Distillation. By this method pure water is obtained, but this method of purification cannot be used conveniently in the home (Section 25).
(c) Filtration. In filtration, the water is forced through porcelain or other porous substances which allow the passage of water, but which hold back the minute foreign particles suspended in the water. (See Laboratory Manual.) The filters used in ordinary dwellings are of stone, asbestos, or charcoal. They are often valueless, because they soon become choked and cannot be properly cleaned.
The filtration plants owned and operated by large cities are usually safe; there is careful supervision of the filters, and frequent and effective cleanings are made. In many cities the filtration system is so good that private care of the water supply is unnecessary.
71. The Source of Water. In the beginning, the earth was stored with water just as it was with metal, rock, etc. Some of the water gradually took the form of rivers, lakes, streams, and wells, as now, and it is this original supply of water which furnishes us all that we have to-day. We quarry to obtain stone and marble for building, and we fashion the earth's treasures into forms of our own, but we cannot create these things. We bore into the ground and drill wells in order to obtain water from hidden sources; we utilize rapidly flowing streams to drive the wheels of commerce, but the total amount of water remains practically unchanged.
The water which flows on the earth is constantly changing its form; the heat of the sun causes it to evaporate, or to become vapor, and to mingle with the atmosphere. In time, the vapor cools, condenses, and falls as snow or rain; the water which is thus returned to the earth feeds our rivers, lakes, springs, and wells, and these in turn supply water to man. When water falls upon a field, it soaks into the ground, or collects in puddles which slowly evaporate, or it runs off and drains into small streams or into rivers. That which soaks into the ground is the most valuable because it remains on the earth longest and is the purest.
FIG. 38.βHow springs are formed. A, porous layer; B, non-porous layer; C, spring.
Water which soaks into the ground moves slowly downward and after a longer or shorter journey, meets with a non-porous layer of rock through which it cannot pass, and which effectually hinders its downward passage. In such regions, there is an accumulation of water, and a well dug there would have an abundant supply of water. The non-porous layer is rarely level, and hence the water whose vertical path is obstructed does not "back up" on the soil, but flows down hill parallel with the obstructing non-porous layer, and in some distant region makes an outlet for itself, forming a spring (Fig. 38). The streams originating in the springs flow through the land and eventually join larger streams or rivers; from the surface of streams and rivers evaporation occurs, the water once more becomes vapor and passes into the atmosphere, where it is condensed and again falls to the earth.
Water which has filtered through many feet of earth is far purer and safer than that which fell directly into the rivers, or which ran off from the land and joined the surface streams without passing through the soil.
72. The Composition of Water. Water was long thought to be a simple substance, but toward the end of the eighteenth century it was found to consist of two quite different substances, oxygen (O) and hydrogen (H.)
FIG. 39.βThe decomposition of water.
If we send an electric current through water (acidulated to make it a good conductor), as shown in Figure 39, we see bubbles of gas rising from the end of the wire by which the current enters the water, and other bubbles of gas rising from the end of the wire by which the current leaves the water. These gases have evidently come from the water and are the substances of which it is composed, because the water begins to disappear as the gases are formed. If we place over each end of the wire an inverted jar filled with water, the gases are easily collected. The first thing we notice is that there is always twice as much of one gas as of the other; that is, water is composed of two substances, one of which is always present in twice as large quantities as the other.
73. The Composition of Water. On testing the gases into which water is broken up by an electric current, we find them to be quite different. One proves to be oxygen, a substance with which we are already familiar. The other gas, hydrogen, is new to us and is interesting as being the lightest known substance, being even "lighter than a feather."
An important fact about hydrogen is that in burning it gives as much heat as five times its weight of coal. Its flame is blue and almost invisible by daylight, but intensely hot. If fine platinum wire is placed in an ordinary gas flame, it does not melt, but if placed in a flame of burning hydrogen, it melts very quickly.
74. How to prepare Hydrogen. There are many different methods of preparing hydrogen, but the easiest laboratory method is to pour sulphuric acid, or hydrochloric acid, on zinc shavings and to collect in a bottle the gas which is given off. This gas proves to be colorless, tasteless, and odorless. (See Laboratory Manual.)
CHAPTER VII AIR75. The Instability of the Air. We are usually not conscious of the air around us, but sometimes we realize that the air is heavy, while at other times we feel the bracing effect of the atmosphere. We live in an ocean of air as truly as fish inhabit an ocean of water. If you have ever been at the seashore you know that the ocean is never still for a second; sometimes the waves surge back and forth in angry fury, at other times the waves glide gently in to the shore and the surface is as smooth as glass; but we know that there is perpetual motion of the water even when the ocean is in its gentlest moods. Generally our atmosphere is quiet, and we are utterly unconscious of it; at other times we are painfully aware of it, because of its furious winds. Then again we are oppressed by it because of the vast quantity of vapor which it holds in the form of fog, or mist. The atmosphere around us is as restless and varying as is the water of the sea. The air at the top of a high tower is very different from the air at the base of the tower. Not only does the atmosphere vary greatly at different altitudes, but it varies at the same place from time to time, at one period being heavy and raw, at another being fresh and invigorating.
Winds, temperature, and humidity all have a share in determining atmospheric conditions, and no one of these plays a small part.
FIG. 40.βTo illustrate the decrease in pressure with height.
76. The Character of the Air. The atmosphere which envelops us at all times extends more than fifty miles above us, its height being far greater than the greatest depths of the sea. This atmosphere varies from place to place; at the sea level it is heavy, on the mountain top less heavy, and far above the earth it is so light that it does not contain enough oxygen to permit man to live. Figure 40 illustrates by a pile of pillows how the pressure of the air varies from level to level.
Sea level is a low portion of the earth's surface, hence at sea level there is a high column of air, and a heavy air pressure. As one passes from sea level to mountain top a gradual but steady decrease in the height of the air column occurs, and hence a gradual but definite lessening of the air pressure.
FIG. 41.βThe water in the tube is at the same level as that in the glass.
77. Air Pressure. If an empty tube (Fig. 41) is placed upright in water, the water will not rise in the tube, but if the tube is put in water and the air is then drawn out of the tube by the mouth, the water will rise in the tube (Fig. 42). This is what happens when we take lemonade through a straw. When the air is withdrawn from the straw by the mouth, the pressure within the straw is reduced, and the liquid is forced up the straw by the air pressure on the surface of the liquid in the glass. Even the ancient Greeks and Romans knew that water would rise in a tube when the pressure within the tube was reduced, and hence they tried to
Comments (0)