American library books » Science » The Chemical History of a Candle by Michael Faraday (detective books to read TXT) 📕

Read book online «The Chemical History of a Candle by Michael Faraday (detective books to read TXT) 📕».   Author   -   Michael Faraday



1 ... 7 8 9 10 11 12 13 14 15 ... 22
Go to page:
of this substance are as regards combustion. For instance, here is a lamp which, simple though it be, is the original, I may say, of a great variety of lamps which are constructed for divers purposes—for light-houses, microscopic illuminations, and other uses; and if it were proposed to make it burn very brightly, you would say, "If a candle burnt better in oxygen, will not a lamp do the same?" Why, it will do so. Mr. Anderson will give me a tube coming from our oxygen reservoir, and I am about to apply it to this flame, which I will previously make burn badly on purpose. There comes the oxygen: what a combustion that makes! But if I shut it off, what becomes of the lamp? [The flow of oxygen was stopped, and the lamp relapsed to its former dimness.] It is wonderful how, by means of oxygen, we get combustion accelerated. But it does not affect merely the combustion of hydrogen, or carbon, or the candle; but it exalts all combustions of the common kind. We will take one which relates to iron, for instance, as you have already seen iron burn a little in the atmosphere. Here is a jar of oxygen, and this is a piece of iron wire; but if it were a bar as thick as my wrist, it would burn the same.

[Illustration: Fig. 23.]

I first attach a little piece of wood to the iron, I then set the wood on fire and let them both down together into the jar. The wood is now alight, and there it burns as wood should burn in oxygen; but it will soon communicate its combustion to the iron. The iron is now burning brilliantly, and will continue so for a long time. As long as we supply oxygen, so long can we carry on the combustion of the iron, until the latter is consumed.

We will now put that on one side, and take some other substance; but we must limit our experiments, for we have not time to spare for all the illustrations you would have a right to if we had more time. We will take a piece of sulphur—you know how sulphur burns in the air—well, we put it into the oxygen, and you will see that whatever can burn in air, can burn with a far greater intensity in oxygen, leading you to think that perhaps the atmosphere itself owes all its power of combustion to this gas. The sulphur is now burning very quietly in the oxygen; but you cannot for a moment mistake the very high and increased action which takes place when it is so burnt, instead of being burnt merely in common air.

[Illustration: Fig. 24.]

I am now about to shew you the combustion of another substance—phosphorus. I can do it better for you here than you can do it at home. This is a very combustible substance; and if it be so combustible in air, what might you expect it would be in oxygen? I am about to shew it to you not in its fullest intensity, for if I did so we should almost blow the apparatus up—I may even now crack the jar, though I do not want to break things carelessly. You see how it burns in the air. But what a glorious light it gives out when I introduce it into oxygen! [Introducing the lighted phosphorus into the jar of oxygen.] There you see the solid particles going off which cause that combustion to be so brilliantly luminous.

Thus far we have tested this power of oxygen, and the high combustion it produces by means of other substances. We must now, for a little while longer, look at it as respects the hydrogen. You know, when we allowed the oxygen and the hydrogen derived from the water to mix and burn together, we had a little explosion. You remember, also, that when I burnt the oxygen and the hydrogen in a jet together, we got very little light, but great heat. I am now about to set fire to oxygen and hydrogen, mixed in the proportion in which they occur in water. Here is a vessel containing one volume of oxygen and two volumes of hydrogen. This mixture is exactly of the same nature as the gas we just now obtained from the voltaic battery: it would be far too much to burn at once; I have therefore arranged to blow soap-bubbles with it, and burn those bubbles, that we may see by a general experiment or two how this oxygen supports the combustion of the hydrogen. First of all, we will see whether we can blow a bubble. Well, there goes the gas [causing it to issue through a tobacco-pipe into some soap-suds]. Here I have a bubble. I am receiving them on my hand: and you will perhaps think I am acting oddly in this experiment; but it is to shew you that we must not always trust to noise and sounds, but rather to real facts. [Exploding a bubble on the palm of his hand.] I am afraid to fire a bubble from the end of the pipe, because the explosion would pass up into the jar and blow it to pieces. This oxygen then will unite with the hydrogen, as you see by the phenomena, and hear by the sound, with the utmost readiness of action, and all its powers are then taken up in its neutralisation of the qualities of the hydrogen.

So now I think you will perceive the whole history of water with reference to oxygen and the air, from what we have before said. Why does a piece of potassium decompose water? Because it finds oxygen in the water. What is set free when I put it in the water, as I am about to do again? It sets free hydrogen, and the hydrogen burns; but the potassium itself combines with oxygen; and this piece of potassium, in taking the water apart—the water, you may say, derived from the combustion of the candle—takes away the oxygen which the candle took from the air, and so sets the hydrogen free; and even if I take a piece of ice, and put a piece of potassium upon it, the beautiful affinities by which the oxygen and the hydrogen are related are such, that the ice will absolutely set fire to the potassium. I shew this to you to-day, in order to enlarge your ideas of these things, and that you may see how greatly results are modified by circumstances. There is the potassium on the ice, producing a sort of volcanic action.

It will be my place, when next we meet, having pointed out these anomalous actions, to shew you that none of these extra and strange effects are met with by us—that none of these strange and injurious actions take place when we are burning, not merely a candle, but gas in our streets, or fuel in our fireplaces, so long as we confine ourselves within the laws that Nature has made for our guidance.

LECTURE V. OXYGEN PRESENT IN THE AIR—NATURE OF THE ATMOSPHERE—ITS PROPERTIES—OTHER PRODUCTS FROM THE CANDLE—CARBONIC ACID—ITS PROPERTIES.

We have now seen that we can produce hydrogen and oxygen from the water that we obtained from the candle. Hydrogen, you know, comes from the candle, and oxygen, you believe, comes from the air. But then you have a right to ask me, "How is it that the air and the oxygen do not equally well burn the candle?" If you remember what happened when I put a jar of oxygen over a piece of candle, you recollect there was a very different kind of combustion to that which took place in the air. Now, why is this? It is a very important question, and one I shall endeavour to make you understand: it relates most intimately to the nature of the atmosphere, and is most important to us.

We have several tests for oxygen besides the mere burning of bodies. You have seen a candle burnt in oxygen, or in the air; you have seen phosphorus burnt in the air, or in oxygen; and you have seen iron-filings burnt in oxygen. But we have other tests besides these, and I am about to refer to one or two of them for the purpose of carrying your conviction and your experience further. Here we have a vessel of oxygen. I will shew its presence to you: if I take a little spark and put it into that oxygen, you know, by the experience you gained the last time we met, what will happen; if I put that spark into the jar, it will tell you whether we have oxygen here or not. Yes! We have proved it by combustion; and now here is another test for oxygen, which is a very curious and useful one. I have here two jars full of gas, with a plate between them to prevent their mixing; I take the plate away, and the gases are creeping one into the other. "What happens?" say you: "they together produce no such combustion as was seen in the case of the candle." But see how the presence of oxygen is told by its association with this other substance[14]. What a beautifully coloured gas I have obtained in this way, shewing me the presence of the oxygen! In the same way we can try this experiment by mixing common air with this test-gas. Here is a jar containing air—such air as the candle would burn in—and here is a jar or bottle containing the test-gas. I let them come together over water, and you see the result: the contents of the test-bottle are flowing into the jar of air, and you see I obtain exactly the same kind of action as before, and that shews me that there is oxygen in the air—the very same substance that has been already obtained by us from the water produced by the candle. But then, beyond that, how is it that the candle does not burn in air as well as in oxygen? We will come to that point at once. I have here two jars; they are filled to the same height with gas, and the appearance to the eye is alike in both, and I really do not know at present which of these jars contains oxygen and which contains air, although I know they have previously been filled with these gases. But here is our test-gas, and I am going to work with the two jars, in order to examine whether there is any difference between them in the quality of reddening this gas. I am now going to turn this test-gas into one of the jars, and observe what happens. There is reddening, you see; there is then oxygen present. We will now test the other jar; but you see this is not so distinctly red as the first: and, further, this curious thing happens,—if I take these two gases and shake them well together with water, we shall absorb the red gas; and then, if I put in more of this test-gas and shake again, we shall absorb more; and I can go on as long as there be any oxygen present to produce that effect. If I let in air, it will not matter; but the moment I introduce water, the red gas disappears; and I may go on in this way, putting in more and more of the test-gas, until I come to something left behind which will not redden any longer by the use of that particular body that rendered the air and the oxygen red. Why is that? You see in a moment it is because there is, besides oxygen, something else present which is left behind. I will let a little more air into the jar, and if it turns red you will know that some of that reddening gas is still present, and that consequently it was not for the want of this producing body that that air was left behind.

Now, you will begin to understand what I am about to say. You saw that when I burnt phosphorus in a jar, as the smoke produced by the phosphorus and the oxygen of the air condensed, it left a good deal of gas unburnt, just as this red gas left something untouched,—there was, in fact, this gas left behind, which the phosphorus cannot touch, which the reddening gas cannot touch, and this something is not oxygen, and yet is part of the atmosphere.

So that is one way of opening out air into the two things of which it is composed—oxygen, which burns our candles, our phosphorus, or anything else; and this other substance—nitrogen—which will

1 ... 7 8 9 10 11 12 13 14 15 ... 22
Go to page:

Free e-book: «The Chemical History of a Candle by Michael Faraday (detective books to read TXT) 📕»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment