American library books Β» Science Β» The Elements of Geology by William Harmon Norton (feel good novels .txt) πŸ“•

Read book online Β«The Elements of Geology by William Harmon Norton (feel good novels .txt) πŸ“•Β».   Author   -   William Harmon Norton



1 ... 13 14 15 16 17 18 19 20 21 ... 53
Go to page:
gravel washed from the ground moraine. "Glacier milk" the Swiss call this muddy water, the gray color of whose silt proves it rock flour freshly ground by the ice from the unoxidized sound rock of its bed, the mud of streams being yellowish when it is washed from the oxidized mantle of waste. Since glacial streams are well loaded with waste due to vigorous ice erosion, the valley in front of the glacier is commonly aggraded to a broad, flat floor. These outwash deposits are known as VALLEY DRIFT.

The sand brought out by streams from beneath a glacier differs from river sand in that it consists of freshly broken angular grains. Why?

The stream derives its water chiefly from the surface melting of the glacier. As the ice is touched by the rays of the morning sun in summer, water gathers in pools, and rills trickle and unite in brooklets which melt and cut shallow channels in the blue ice. The course of these streams is short. Soon they plunge into deep wells cut by their whirling waters where some crevasse has begun to open across their path. These wells lead into chambers and tunnels by which sooner or later their waters find way to the rock floor of the valley and there unite in a subglacial stream.

THE LOWER LIMIT OF GLACIERS. The glaciers of a region do not by any means end at a uniform height above sea level. Each terminates where its supply is balanced by melting. Those therefore which are fed by the largest and deepest neves and those also which are best protected from the sun by a northward exposure or by the depth of their inclosing valleys flow to lower levels than those whose supply is less and whose exposure to the sun is greater.

A series of cold, moist years, with an abundant snowfall, causes glaciers to thicken and advance; a series of warm, dry years causes them to wither and melt back. The variation in glaciers is now carefully observed in many parts of the world. The Muir glacier has retreated two miles in twenty years. The glaciers of the Swiss Alps are now for the most part melting back, although a well-known glacier of the eastern Alps, the Vernagt, advanced five hundred feet in the year 1900, and was then plowing up its terminal moraine.

How soon would you expect a glacier to advance after its neve fields have been swollen with unusually heavy snows, as compared with the time needed for the flood of a large river to reach its mouth after heavy rains upon its headwaters?

On the surface of glaciers in summer time one may often see large stones supported by pillars of ice several feet in height (Fig. 108). These "glacier tables" commonly slope more or less strongly to the south, and thus may be used to indicate roughly the points of the compass. Can you explain their formation and the direction of their slope? On the other hand, a small and thin stone, or a patch of dust, lying on the ice, tends to sink a few inches into it. Why?

In what respects is a valley glacier like a mountain stream which flows out upon desert plains?

Two confluent glaciers do not mingle their currents as do two confluent rivers. What characteristics of surface moraines prove this fact?

What effect would you expect the laws of glacier motion to have on the slant of the sides of transverse crevasses?

A trunk glacier has four medial moraines. Of how many tributaries is it composed? Illustrate by diagram.

State all the evidences which you have found that glaciers move.

If a glacier melts back with occasional pauses up a valley, what records are left of its retreat?

PIEDMONT GLACIERS

THE MALASPINA GLACIER. Piedmont (foot of the mountain) glaciers are, as the name implies, ice fields formed at the foot of mountains by the confluence of valley glaciers. The Malaspina glacier of Alaska, the typical glacier of this kind, is seventy miles wide and stretches for thirty miles from the foot of the Mount Saint Elias range to the shore of the Pacific Ocean. The valley glaciers which unite and spread to form this lake of ice lie above the snow line and their moraines are concealed beneath neve. The central area of the Malaspina is also free from debris; but on the outer edge large quantities of englacial drift are exposed by surface melting and form a belt of morainic waste a few feet thick and several miles wide, covered in part with a luxuriant forest, beneath which the ice is in places one thousand feet in depth. The glacier here is practically stagnant, and lakes a few hundred yards across, which could not exist were the ice in motion and broken with crevasses, gather on their beds sorted waste from the moraine. The streams which drain the glacier have cut their courses in englacial and subglacial tunnels; none flow for any distance on the surface. The largest, the Yahtse River, issues from a high archway in the ice,β€”a muddy torrent one hundred feet wide and twenty feet deep, loaded with sand and stones which it deposits in a broad outwash plain (Fig. 110). Where the ice has retreated from the sea there is left a hummocky drift sheet with hollows filled with lakelets. These deposits help to explain similar hummocky regions of drift and similar plains of coarse, water-laid material often found in the drift-covered area of the northeastern United States.

THE GEOLOGICAL WORK OF GLACIER ICE

The sluggish glacier must do its work in a different way from the agile river. The mountain stream is swift and small, and its channel occupies but a small portion of the valley. The glacier is slow and big; its rate of motion may be less than a millionth of that of running water over the same declivity, and its bulk is proportionately large and fills the valley to great depth. Moreover, glacier ice is a solid body plastic under slowly applied stresses, while the water of rivers is a nimble fluid.

TRANSPORTATION. Valley glaciers differ from rivers as carriers in that they float the major part of their load upon their surface, transporting the heaviest bowlder as easily as a grain of sand; while streams push and roll much of their load along their beds, and their power of transporting waste depends solely upon their velocity. The amount of the surface load of glaciers is limited only by the amount of waste received from the mountain slopes above them. The moving floor of ice stretched high across a valley sweeps along as lateral moraines much of the waste which a mountain stream would let accumulate in talus and alluvial cones.

While a valley glacier carries much of its load on top, an ice sheet, such as that of Greenland, is free from surface debris, except where moraines trail away from some nunatak. If at its edge it breaks into separate glaciers which drain down mountain valleys, these tongues of ice will carry the selvages of waste common to valley glaciers. Both ice sheets and valley glaciers drag on large quantities of rock waste in their ground moraines.

Stones transported by glaciers are sometimes called erratics. Such are the bowlders of the drift of our northern states. Erratics may be set down in an insecure position on the melting of the ice.

DEPOSIT. Little need be added here to what has already been said of ground and terminal moraines. All strictly glacial deposits are unstratified. The load laid down at the end of a glacier in the terminal moraine is loose in texture, while the drift lodged beneath the glacier as ground moraine is often an extremely dense, stony clay, having been compacted under the pressure of the overriding ice.

EROSION. A glacier erodes its bed and banks in two ways,β€”by abrasion and by plucking.

The rock bed over which a glacier has moved is seen in places to have been abraded, or ground away, to smooth surfaces which are marked by long, straight, parallel scorings aligned with the line of movement of the ice and varying in size from hair lines and coarse scratches to exceptional furrows several feet deep. Clearly this work has been accomplished by means of the sharp sand, the pebbles, and the larger stones with which the base of the glacier is inset, and which it holds in a firm grasp as running water cannot. Hard and fine-grained rocks, such as granite and quartzite, are often not only ground down to a smooth surface but are also highly polished by means of fine rock flour worn from the glacier bed.

In other places the bed of the glacier is rough and torn. The rocks have been disrupted and their fragments have been carried away,β€”a process known as PLUCKING. Moving under immense pressure the ice shatters the rock, breaks off projections, presses into crevices and wedges the rocks apart, dislodges the blocks into which the rock is divided by joints and bedding planes, and freezing fast to the fragments drags them on. In this work the freezing and thawing of subglacial waters in any cracks and crevices of the rock no doubt play an important part. Plucking occurs especially where the bed rock is weak because of close jointing. The product of plucking is bowlders, while the product of abrasion is fine rock flour and sand.

Is the ground moraine of Figure 87 due chiefly to abrasion or to plucking?

ROCHES MOUTONNEES AND ROUNDED HILLS. The prominences left between the hollows due to plucking are commonly ground down and rounded on the stoss side,β€”the side from which the ice advances,β€”and sometimes on the opposite, the lee side, as well. In this way the bed rock often comes to have a billowy surface known as roches moutonnees (sheep rocks). Hills overridden by an ice sheet often have similarly rounded contours on the stoss side, while on the lee side they may be craggy, either because of plucking or because here they have been less worn from their initial profile.

THE DIRECTION OF GLACIER MOVEMENT. The direction of the flow of vanished glaciers and ice sheets is recorded both in the differences just mentioned in the profiles of overridden hills and also in the minute details of the glacier trail.

Flint nodules or other small prominences in the bed rock are found more worn on the stoss than on the lee side, where indeed they may have a low cone of rock protected by them from abrasion. Cavities, on the other hand, have their edges worn on the lee side and left sharp upon the stoss.

Surfaces worn and torn in the ways which we have mentioned are said to be glaciated. But it must not be supposed that a glacier everywhere glaciates its bed. Although in places it acts as a rasp or as a pick, in others, and especially where its pressure is least, as near the terminus, it moves over its bed in the manner of a sled. Instances are known where glaciers have advanced over deposits of sand and gravel without disturbing them to any notable degree. Like a river, a glacier does not everywhere erode. In places it leaves its bed undisturbed and in places aggrades it by deposits of the ground moraine.

CIRQUES. Valley glaciers commonly head as we have seen, in broad amphitheaters deeply filled with snow and ice. On mountains now destitute of glaciers, but whose glaciation shows that they have supported glaciers in the past, there are found similar crescentic hollows with high, precipitous walls and glaciated floors. Their floors are often basined and hold lakelets whose deep and quiet waters reflect the sheltering ramparts of rugged rock which tower far above them. Such mountain hollows are termed CIRQUES. As a powerful spring wears back a recess in the valley side where it discharges, so the fountain head of a glacier gradually wears back a cirque. In its slow movement the neve field broadly scours its bed to a flat or basined floor. Meanwhile the sides of the valley head are steepened and driven back to precipitous walls. For in winter the crevasse of the bergschrund which surrounds the neve field is filled with snow and the neve is frozen fast to the rocky sides of the valley. In early summer the neve tears itself free, dislodging and removing any loosened blocks, and the open fissure of the bergschrund allows frost and other agencies of weathering to attack the unprotected rock. As cirques are thus formed and enlarged the peaks beneath which they lie are sharpened, and the mountain crests are scalloped and cut back from either side to knife-edged ridges.

In the western mountains of the United States many cirques, now empty of neve and glacier ice, and known locally as "basins," testify to the fact that in recent times the snow line stood beneath the levels of their floors, and thus

1 ... 13 14 15 16 17 18 19 20 21 ... 53
Go to page:

Free e-book: Β«The Elements of Geology by William Harmon Norton (feel good novels .txt) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment