Five of Maxwell's Papers by James Clerk Maxwell (classic books for 13 year olds .txt) π
Read free book Β«Five of Maxwell's Papers by James Clerk Maxwell (classic books for 13 year olds .txt) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: James Clerk Maxwell
- Performer: 1419119958
Read book online Β«Five of Maxwell's Papers by James Clerk Maxwell (classic books for 13 year olds .txt) πΒ». Author - James Clerk Maxwell
* Transactions of the Royal Scottish Society of Arts, 1855.
***
Address to the Mathematical and Physical Sections of the British Association.
James Clerk Maxwell
[From the British Association Report, Vol. XL.]
[Liverpool, September 15, 1870.]
At several of the recent Meetings of the British Association the varied and important business of the Mathematical and Physical Section has been introduced by an Address, the subject of which has been left to the selection of the President for the time being. The perplexing duty of choosing a subject has not, however, fallen to me.
Professor Sylvester, the President of Section A at the Exeter Meeting, gave us a noble vindication of pure mathematics by laying bare, as it were, the very working of the mathematical mind, and setting before us, not the array of symbols and brackets which form the armoury of the mathematician, or the dry results which are only the monuments of his conquests, but the mathematician himself, with all his human faculties directed by his professional sagacity to the pursuit, apprehension, and exhibition of that ideal harmony which he feels to be the root of all knowledge, the fountain of all pleasure, and the condition of all action. The mathematician has, above all things, an eye for symmetry; and Professor Sylvester has not only recognized the symmetry formed by the combination of his own subject with those of the former Presidents, but has pointed out the duties of his successor in the following characteristic note:β
βMr Spottiswoode favoured the Section, in his opening Address, with a combined history of the progress of Mathematics and Physics; Dr. Tyndallβs address was virtually on the limits of Physical Philosophy; the one here in print,β says Prof. Sylvester, βis an attempted faint adumbration of the nature of Mathematical Science in the abstract. What is wanting (like a fourth sphere resting on three others in contact) to build up the Ideal Pyramid is a discourse on the Relation of the two branches (Mathematics and Physics) to, their action and reaction upon, one another, a magnificent theme, with which it is to be hoped that some future President of Section A will crown the edifice and make the Tetralogy (symbolizable by A+Aβ, A, Aβ, AAβ) complete.β
The theme thus distinctly laid down for his successor by our late President is indeed a magnificent one, far too magnificent for any efforts of mine to realize. I have endeavoured to follow Mr Spottiswoode, as with far-reaching vision he distinguishes the systems of science into which phenomena, our knowledge of which is still in the nebulous stage, are growing. I have been carried by the penetrating insight and forcible expression of Dr Tyndall into that sanctuary of minuteness and of power where molecules obey the laws of their existence, clash together in fierce collision, or grapple in yet more fierce embrace, building up in secret the forms of visible things. I have been guided by Prof. Sylvester towards those serene heights
βWhere never creeps a cloud, or moves a wind, Nor ever falls the least white star of snow, Nor ever lowest roll of thunder moans, Nor sound of human sorrow mounts to mar Their sacred everlasting calm.β
But who will lead me into that still more hidden and dimmer region where Thought weds Fact, where the mental operation of the mathematician and the physical action of the molecules are seen in their true relation? Does not the way to it pass through the very den of the metaphysician, strewed with the remains of former explorers, and abhorred by every man of science? It would indeed be a foolhardy adventure for me to take up the valuable time of the Section by leading you into those speculations which require, as we know, thousands of years even to shape themselves intelligibly.
But we are met as cultivators of mathematics and physics. In our daily work we are led up to questions the same in kind with those of metaphysics; and we approach them, not trusting to the native penetrating power of our own minds, but trained by a long-continued adjustment of our modes of thought to the facts of external nature.
As mathematicians, we perform certain mental operations on the symbols of number or of quantity, and, by proceeding step by step from more simple to more complex operations, we are enabled to express the same thing in many different forms. The equivalence of these different forms, though a necessary consequence of self-evident axioms, is not always, to our minds, self-evident; but the mathematician, who by long practice has acquired a familiarity with many of these forms, and has become expert in the processes which lead from one to another, can often transform a perplexing expression into another which explains its meaning in more intelligible language.
As students of Physics we observe phenomena under varied circumstances, and endeavour to deduce the laws of their relations. Every natural phenomenon is, to our minds, the result of an infinitely complex system of conditions. What we set ourselves to do is to unravel these conditions, and by viewing the phenomenon in a way which is in itself partial and imperfect, to piece out its features one by one, beginning with that which strikes us first, and thus gradually learning how to look at the whole phenomenon so as to obtain a continually greater degree of clearness and distinctness. In this process, the feature which presents itself most forcibly to the untrained inquirer may not be that which is considered most fundamental by the experienced man of science; for the success of any physical investigation depends on the judicious selection of what is to be observed as of primary importance, combined with a voluntary abstraction of the mind from those features which, however attractive they appear, we are not yet sufficiently advanced in science to investigate with profit.
Intellectual processes of this kind have been going on since the first formation of language, and are going on still. No doubt the feature which strikes us first and most forcibly in any phenomenon, is the pleasure or the pain which accompanies it, and the agreeable or disagreeable results which follow after it. A theory of nature from this point of view is embodied in many of our words and phrases, and is by no means extinct even in our deliberate opinions.
It was a great step in science when men became convinced that, in order to understand the nature of things, they must begin by asking, not whether a thing is good or bad, noxious or beneficial, but of what kind is it? and how much is there of it? Quality and Quantity were then first recognized as the primary features to be observed in scientific inquiry.
As science has been developed, the domain of quantity has everywhere encroached on that of quality, till the process of scientific inquiry seems to have become simply the measurement and registration of quantities, combined with a mathematical discussion of the numbers thus obtained. It is this scientific method of directing our attention to those features of phenomena which may be regarded as quantities which brings physical research under the influence of mathematical reasoning. In the work of the Section we shall have abundant examples of the successful application of this method to the most recent conquests of science; but I wish at present to direct your attention to some of the reciprocal effects of the progress of science on those elementary conceptions which are sometimes thought to be beyond the reach of change.
If the skill of the mathematician has enabled the experimentalist to see that the quantities which he has measured are connected by necessary relations, the discoveries of physics have revealed to the mathematician new forms of quantities which he could never have imagined for himself.
Of the methods by which the mathematician may make his labours most useful to the student of nature, that which I think is at present most important is the systematic classification of quantities.
The quantities which we study in mathematics and physics may be classified in two different ways.
The student who wishes to master any particular science must make himself familiar with the various kinds of quantities which belong to that science. When he understands all the relations between these quantities, he regards them as forming a connected system, and he classes the whole system of quantities together as belonging to that particular science. This classification is the most natural from a physical point of view, and it is generally the first in order of time.
But when the student has become acquainted with several different sciences, he finds that the mathematical processes and trains of reasoning in one science resemble those in another so much that his knowledge of the one science may be made a most useful help in the study of the other.
When he examines into the reason of this, he finds that in the two sciences he has been dealing with systems of quantities, in which the mathematical forms of the relations of the quantities are the same in both systems, though the physical nature of the quantities may be utterly different.
He is thus led to recognize a classification of quantities on a new principle, according to which the physical nature of the quantity is subordinated to its mathematical form. This is the point of view which is characteristic of the mathematician; but it stands second to the physical aspect in order of time, because the human mind, in order to conceive of different kinds of quantities, must have them presented to it by nature.
I do not here refer to the fact that all quantities, as such, are subject to the rules of arithmetic and algebra, and are therefore capable of being submitted to those dry calculations which represent, to so many minds, their only idea of mathematics.
The human mind is seldom satisfied, and is certainly never exercising its highest functions, when it is doing the work of a calculating machine. What the man of science, whether he is a mathematician or a physical inquirer, aims at is, to acquire and develope clear ideas of the things he deals with. For this purpose he is willing to enter on long calculations, and to be for a season a calculating machine, if he can only at last make his ideas clearer.
But if he finds that clear ideas are not to be obtained by means of processes the steps of which he is sure to forget before he has reached the conclusion, it is much better that he should turn to another method, and try to understand the subject by means of well-chosen illustrations derived from subjects with which he is more familiar.
We all know how much more popular the illustrative
Comments (0)