American library books Β» Science Β» Volcanic Islands by Charles Robert Darwin (best authors to read .txt) πŸ“•

Read book online Β«Volcanic Islands by Charles Robert Darwin (best authors to read .txt) πŸ“•Β».   Author   -   Charles Robert Darwin



1 ... 17 18 19 20 21 22 23 24 25 ... 28
Go to page:
this Cove. The internal and external strata differ little in composition, and the former have evidently resulted from the wear and tear, and redeposition of the matter forming the external crateriform strata. From the great development of these inner beds, a person walking round the rim of this crater might fancy himself on a circular anticlinal ridge of stratified sandstone and conglomerate. The sea is wearing away the inner and outer strata, and especially the latter; so that the inwardly converging strata will, perhaps, in some future age, be left standing alone--a case which might at first perplex a geologist. (I believe that this case actually occurs in the Azores, where Dr. Webster "Description" page 185, has described a basin-formed, little island, composed of STRATA OF TUFF, dipping inwards and bounded externally by steep sea-worn cliffs. Dr. Daubeny supposes "Volcanoes" page 266, that this cavity must have been formed by a circular subsidence. It appears to me far more probable, that we here have strata which were originally deposited within the hollow of a crater, of which the exterior walls have since been removed by the sea.)


JAMES ISLAND.
Two craters of tuff on this island are the only remaining ones which require any notice. One of them lies a mile and a half inland from Puerto Grande: it is circular, about the third of a mile in diameter, and 400 feet in depth. It differs from all the other tuff-craters which I examined, in having the lower part of its cavity, to the height of between one hundred and one hundred and fifty feet, formed by a precipitous wall of basalt, giving to the crater the appearance of having burst through a solid sheet of rock. The upper part of this crater consists of strata of the altered tuff, with a semi-resinous fracture. Its bottom is occupied by a shallow lake of brine, covering layers of salt, which rest on deep black mud. The other crater lies at the distance of a few miles, and is only remarkable from its size and perfect condition. Its summit is 1,200 feet above the level of the sea, and the interior hollow is 600 feet deep. Its external sloping surface presented a curious appearance from the smoothness of the wide layers of tuff, which resembled a vast plastered floor. Brattle Island is, I believe, the largest crater in the Archipelago composed of tuff; its interior diameter is nearly a nautical mile. At present it is in a ruined condition, consisting of little more than half a circle open to the south; its great size is probably due, in part, to internal degradation, from the action of the sea.


SEGMENT OF A BASALTIC CRATER.
One side of Fresh-water Bay, in James Island, is bounded by a promontory, which forms the last wreck of a great crater. On the beach of this promontory, a quadrant-shaped segment of a small subordinate point of eruption stands exposed. It consists of nine separate little streams of lava piled upon each other; and of an irregular pinnacle, about fifteen feet high, of reddish-brown, vesicular basalt, abounding with large crystals of glassy albite, and with fused augite. This pinnacle, and some adjoining paps of rock on the beach, represent the axis of the crater. The streams of lava can be followed up a little ravine, at right angles to the coast, for between ten and fifteen yards, where they are hidden by detritus: along the beach they are visible for nearly eighty yards, and I do not believe that they extend much further. The three lower streams are united to the pinnacle; and at the point of junction (as shown in Figure 14, a rude sketch made on the spot), they are slightly arched, as if in the act of flowing over the lip of the crater. The six upper streams no doubt were originally united to this same column before it was worn down by the sea. The lava of these streams is of similar composition with that of the pinnacle, excepting that the crystals of albite appear to be more comminuted, and the grains of fused augite are absent. Each stream is separated from the one above it by a few inches, or at most by one or two feet in thickness, of loose fragmentary scoriae, apparently derived from the abrasion of the streams in passing over each other. All these streams are very remarkable from their thinness. I carefully measured several of them; one was eight inches thick, but was firmly coated with three inches above, and three inches below, of red scoriaceous rock (which is the case with all the streams), making altogether a thickness of fourteen inches: this thickness was preserved quite uniformly along the entire length of the section. A second stream was only eight inches thick, including both the upper and lower scoriaceous surfaces. Until examining this section, I had not thought it possible that lava could have flowed in such uniformly thin sheets over a surface far from smooth. These little streams closely resemble in composition that great deluge of lava at Albemarle Island, which likewise must have possessed a high degree of fluidity.


PSEUDO-EXTRANEOUS, EJECTED FRAGMENTS.
In the lava and in the scoriae of this little crater, I found several fragments, which, from their angular form, their granular structure, their freedom from air-cells, their brittle and burnt condition, closely resembled those fragments of primary rocks which are occasionally ejected, as at Ascension, from volcanoes. These fragments consist of glassy albite, much mackled, and with very imperfect cleavages, mingled with semi-rounded grains, having tarnished, glossy surfaces, of a steel-blue mineral. The crystals of albite are coated by a red oxide of iron, appearing like a residual substance; and their cleavage-planes also are sometimes separated by excessively fine layers of this oxide, giving to the crystals the appearance of being ruled like a glass micrometer. There was no quartz. The steel-blue mineral, which is abundant in the pinnacle, but which disappears in the streams derived from the pinnacle, has a fused appearance, and rarely presents even a trace of cleavage; I obtained, however, one measurement, which proved that it was augite; and in one other fragment, which differed from the others, in being slightly cellular, and in gradually blending into the surrounding matrix the small grains of this mineral were tolerably well crystallised. Although there is so wide a difference in appearance between the lava of the little streams, and especially of their red scoriaceous crusts, and one of these angular ejected fragments, which at first sight might readily be mistaken for syenite, yet I believe that the lava has originated from the melting and movement of a mass of rock of absolutely similar composition with the fragments. Besides the specimen above alluded to, in which we see a fragment becoming slightly cellular, and blending into the surrounding matrix, some of the grains of the steel-blue augite also have their surfaces becoming very finely vesicular, and passing into the nature of the surrounding paste; other grains are throughout, in an intermediate condition. The paste seems to consist of the augite more perfectly fused, or, more probably, merely disturbed in its softened state by the movement of the mass, and mingled with the oxide of iron and with finely comminuted, glassy albite. Hence probably it is that the fused albite, which is abundant in the pinnacle, disappears in the streams. The albite is in exactly the same state, with the exception of most of the crystals being smaller in the lava and in the embedded fragments; but in the fragments they appear to be less abundant: this, however, would naturally happen from the intumescence of the augitic base, and its consequent apparent increase in bulk. It is interesting thus to trace the steps by which a compact granular rock becomes converted into a vesicular, pseudo-porphyritic lava, and finally into red scoriae. The structure and composition of the embedded fragments show that they are parts either of a mass of primary rock which has undergone considerable change from volcanic action, or more probably of the crust of a body of cooled and crystallised lava, which has afterwards been broken up and re-liquified; the crust being less acted on by the renewed heat and movement.


CONCLUDING REMARKS ON THE TUFF-CRATERS.
These craters, from the peculiarity of the resin-like substance which enters largely into their composition, from their structure, their size and number, present the most striking feature in the geology of this Archipelago. The majority of them form either separate islets, or promontories attached to the larger islands; and those which now stand at some little distance from the coast are worn and breached, as if by the action of the sea. From this general circumstance of their position, and from the small quantity of ejected ashes in any part of the Archipelago, I am led to conclude, that the tuff has been chiefly produced, by the grinding together of fragments of lava within active craters, communicating with the sea. In the origin and composition of the tuff, and in the frequent presence of a central lake of brine and of layers of salt, these craters resemble, though on a gigantic scale, the "salses," or hillocks of mud, which are common in some parts of Italy and in other countries. (D'Aubuisson "Traite de Geognosie" tome 1 page 189. I may remark, that I saw at Terceira, in the Azores, a crater of tuff or peperino, very similar to these of the Galapagos Archipelago. From the description given in Freycinet "Voyage," similar ones occur at the Sandwich Islands; and probably they are present in many other places.) Their closer connection, however, in this Archipelago, with ordinary volcanic action, is shown by the pools of solidified basalt, with which they are sometimes filled up.
It at first appears very singular, that all the craters formed of tuff have their southern sides, either quite broken down and wholly removed, or much lower than the other sides. I saw and received accounts of twenty-eight of these craters; of these, twelve form separate islets (These consist of the three Crossman Islets, the largest of which is 600 feet in height; Enchanted Island; Gardner Island (760 feet high); Champion Island (331 feet high); Enderby Island; Brattle Island; two islets near Indefatigable Island; and one near James Island. A second crater near James Island (with a salt lake in its centre) has its southern side only about twenty feet high, whilst the other parts of the circumference are about three hundred feet in height.), and now exist as mere crescents quite open to the south, with occasionally a few points of rock marking their former circumference: of the remaining sixteen, some form promontories, and others stand at a little distance inland from the shore; but all have their southern sides either the lowest, or quite broken down. Two, however, of the sixteen had their northern sides also low, whilst their eastern and western sides were perfect. I did not see, or hear of, a single exception to the rule, of these craters being broken down or low on the side, which faces a point of the horizon between S.E. and S.W. This rule does not apply to craters composed of lava and scoriae. The explanation is simple: at this Archipelago, the waves from the trade-wind, and the swell propagated from the distant parts of the open ocean, coincide in direction (which is not the case in many parts of the Pacific), and with their united forces attack the southern sides of all the islands; and consequently the southern slope, even when entirely formed of hard basaltic rock, is invariably steeper than the northern slope. As the tuff-craters are composed of a soft material, and as probably all, or nearly all, have at some period stood immersed in the sea, we need not wonder that they should invariably exhibit on their exposed sides the
1 ... 17 18 19 20 21 22 23 24 25 ... 28
Go to page:

Free e-book: Β«Volcanic Islands by Charles Robert Darwin (best authors to read .txt) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment