American library books Β» Science Β» A History of Science, vol 3 by Henry Smith Williams (sites to read books for free TXT) πŸ“•

Read book online Β«A History of Science, vol 3 by Henry Smith Williams (sites to read books for free TXT) πŸ“•Β».   Author   -   Henry Smith Williams



1 2 3 4 5 6 7 8 9 10 ... 44
Go to page:
only be surmised.

 

Halley himself was by no means a tyro in matters astronomical at that time. As the only son of a wealthy soap-boiler living near London, he had been given a liberal education, and even before leaving college made such novel scientific observations as that of the change in the variation of the compass. At nineteen years of age he discovered a new method of determining the elements of the planetary orbits which was a distinct improvement over the old. The year following he sailed for the Island of St, Helena to make observations of the heavens in the southern hemisphere.

 

It was while in St. Helena that Halley made his famous observation of the transit of Mercury over the sun’s disk, this observation being connected, indirectly at least, with his discovery of a method of determining the parallax of the planets. By parallax is meant the apparent change in the position of an object, due really to a change in the position of the observer.

Thus, if we imagine two astronomers making observations of the sun from opposite sides of the earth at the same time, it is obvious that to these observers the sun will appear to be at two different points in the sky. Half the angle measuring this difference would be known as the sun’s parallax. This would depend, then, upon the distance of the earth from the sun and the length of the earth’s radius.

Since the actual length of this radius has been determined, the parallax of any heavenly body enables the astronomer to determine its exact distance.

 

The parallaxes can be determined equally well, however, if two observers are separated by exactly known distances, several hundreds or thousands of miles apart.

In the case of a transit of Venus across the sun’s disk, for example, an observer at New York notes the image of the planet moving across the sun’s disk, and notes also the exact time of this observation. In the same manner an observer at London makes similar observations.

Knowing the distance between New York and London, and the different time of the passage, it is thus possible to calculate the difference of the parallaxes of the sun and a planet crossing its disk. The idea of thus determining the parallax of the planets originated, or at least was developed, by Halley, and from this phenomenon he thought it possible to conclude the dimensions of all the planetary orbits. As we shall see further on, his views were found to be correct by later astronomers.

 

In 1721 Halley succeeded Flamsteed as astronomer royal at the Greenwich Observatory. Although sixty-four years of age at that time his activity in astronomy continued unabated for another score of years. At Greenwich he undertook some tedious observations of the moon, and during those observations was first to detect the acceleration of mean motion. He was unable to explain this, however, and it remained for Laplace in the closing years of the century to do so, as we shall see later.

 

Halley’s book, the Synopsis Astronomiae Cometicae, is one of the most valuable additions to astronomical literature since the time of Kepler. He was first to attempt the calculation of the orbit of a comet, having revived the ancient opinion that comets belong to the solar system, moving in eccentric orbits round the sun, and his calculation of the orbit of the comet of 1682 led him to predict correctly the return of that comet in 1758. Halley’s Study of Meteors.

 

Like other astronomers of his time be was greatly puzzled over the well-known phenomena of shooting-stars, or meteors, making many observations himself, and examining carefully the observations of other astronomers. In 1714 he gave his views as to the origin and composition of these mysterious visitors in the earth’s atmosphere. As this subject will be again referred to in a later chapter, Halley’s views, representing the most advanced views of his age, are of interest.

 

β€œThe theory of the air seemeth at present,” he says, β€œto be perfectly well understood, and the differing densities thereof at all altitudes; for supposing the same air to occupy spaces reciprocally proportional to the quantity of the superior or incumbent air, I have elsewhere proved that at forty miles high the air is rarer than at the surface of the earth at three thousand times; and that the utmost height of the atmosphere, which reflects light in the Crepusculum, is not fully forty-five miles, notwithstanding which β€˜tis still manifest that some sort of vapors, and those in no small quantity, arise nearly to that height. An instance of this may be given in the great light the society had an account of (vide Transact. Sep., 1676) from Dr. Wallis, which was seen in very distant counties almost over all the south part of England. Of which though the doctor could not get so particular a relation as was requisite to determine the height thereof, yet from the distant places it was seen in, it could not but be very many miles high.

 

β€œSo likewise that meteor which was seen in 1708, on the 31st of July, between nine and ten o’clock at night, was evidently between forty and fifty miles perpendicularly high, and as near as I can gather, over Shereness and the buoy on the Nore. For it was seen at London moving horizontally from east by north to east by south at least fifty degrees high, and at Redgrove, in Suffolk, on the Yarmouth road, about twenty miles from the east coast of England, and at least forty miles to the eastward of London, it appeared a little to the westward of the south, suppose south by west, and was seen about thirty degrees high, sliding obliquely downward. I was shown in both places the situation thereof, which was as described, but could wish some person skilled in astronomical matters bad seen it, that we might pronounce concerning its height with more certainty. Yet, as it is, we may securely conclude that it was not many more miles westerly than Redgrove, which, as I said before, is about forty miles more easterly than London. Suppose it, therefore, where perpendicular, to have been thirty-five miles east from London, and by the altitude it appeared at in Londonβ€”

viz., fifty degrees, its tangent will be forty-two miles, for the height of the meteor above the surface of the earth; which also is rather of the least, because the altitude of the place shown me is rather more than less than fifty degrees; and the like may be concluded from the altitude it appeared in at Redgrove, near seventy miles distant. Though at this very great distance, it appeared to move with an incredible velocity, darting, in a very few seconds of time, for about twelve degrees of a great circle from north to south, being very bright at its first appearance; and it died away at the east of its course, leaving for some time a pale whiteness in the place, with some remains of it in the track where it had gone; but no hissing sound as it passed, or bounce of an explosion were heard.

 

β€œIt may deserve the honorable society’s thoughts, how so great a quantity of vapor should be raised to the top of the atmosphere, and there collected, so as upon its ascension or otherwise illumination, to give a light to a circle of above one hundred miles diameter, not much inferior to the light of the moon; so as one might see to take a pin from the ground in the otherwise dark night. β€˜Tis hard to conceive what sort of exhalations should rise from the earth, either by the action of the sun or subterranean heat, so as to surmount the extreme cold and rareness of the air in those upper regions: but the fact is indisputable, and therefore requires a solution.”

 

From this much of the paper it appears that there was a general belief that this burning mass was heated vapor thrown off from the earth in some mysterious manner, yet this is unsatisfactory to Halley, for after citing various other meteors that have appeared within his knowledge, he goes on to say:

 

β€œWhat sort of substance it must be, that could be so impelled and ignited at the same time; there being no Vulcano or other Spiraculum of subterraneous fire in the northeast parts of the world, that we ever yet heard of, from whence it might be projected.

 

β€œI have much considered this appearance, and think it one of the hardest things to account for that I have yet met with in the phenomena of meteors, and I am induced to think that it must be some collection of matter formed in the aether, as it were, by some fortuitous concourse of atoms, and that the earth met with it as it passed along in its orb, then but newly formed, and before it had conceived any great impetus of descent towards the sun. For the direction of it was exactly opposite to that of the earth, which made an angle with the meridian at that time of sixty-seven gr., that is, its course was from west southwest to east northeast, wherefore the meteor seemed to move the contrary way. And besides falling into the power of the earth’s gravity, and losing its motion from the opposition of the medium, it seems that it descended towards the earth, and was extinguished in the Tyrrhene Sea, to the west southwest of Leghorn. The great blow being heard upon its first immersion into the water, and the rattling like the driving of a cart over stones being what succeeded upon its quenching; something like this is always heard upon quenching a very hot iron in water. These facts being past dispute, I would be glad to have the opinion of the learned thereon, and what objection can be reasonably made against the above hypothesis, which I humbly submit to their censure.”[1]

 

These few paragraphs, coming as they do from a leading eighteenth-century astronomer, convey more clearly than any comment the actual state of the meteorological learning at that time. That this ball of fire, rushing β€œat a greater velocity than the swiftest cannon-ball,” was simply a mass of heated rock passing through our atmosphere, did not occur to him, or at least was not credited. Nor is this surprising when we reflect that at that time universal gravitation had been but recently discovered; heat had not as yet been recognized as simply a form of motion; and thunder and lightning were unexplained mysteries, not to be explained for another three-quarters of a century.

In the chapter on meteorology we shall see how the solution of this mystery that puzzled Halley and his associates all their lives was finally attained.

 

BRADLEY AND THE ABERRATION OF LIGHT

 

Halley was succeeded as astronomer royal by a man whose useful additions to the science were not to be recognized or appreciated fully until brought to light by the Prussian astronomer Bessel early in the nineteenth century. This was Dr. James Bradley, an ecclesiastic, who ranks as one of the most eminent astronomers of the eighteenth century. His most remarkable discovery was the explanation of a peculiar motion of the pole-star, first observed, but not explained, by Picard a century before. For many years a satisfactory explanation was sought unsuccessfully by Bradley and his fellow-astronomers, but at last he was able to demonstrate that the stary Draconis, on which he was making his observations, described, or appeared to describe, a small ellipse. If this observation was correct, it afforded a means of computing the aberration of any star at all times. The explanation of the physical cause of this aberration, as Bradley thought, and afterwards demonstrated, was the result of the combination of the motion of light with

1 2 3 4 5 6 7 8 9 10 ... 44
Go to page:

Free e-book: Β«A History of Science, vol 3 by Henry Smith Williams (sites to read books for free TXT) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment