The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) ๐
* See Mr. Vines' excellent discussion ('Arbeiten des Bot. Instituts in Wรผrzburg,' B. II. pp. 142, 143, 1878) on this intricate subject. Hofmeister's observations ('Jahreschrifte des Vereins fรผr Vaterl. Naturkunde in Wรผrtemberg,' 1874, p. 211) on the curious movements of Spirogyra, a plant consisting of a single row of cells, are valuable in relation to this subject.
[page 4] forms of circumnutation; as again are the equally prevalent movements of stems, etc., towards the zenith, and of roots towards the centre of the earth. In accordance with these conclusions, a considerable difficulty in the way of evolution is in part removed, for it might have been asked, how did all these diversified movements for the most different purposes first arise? As the case stands, we know that there is always movement in progress, and its amplitud
Read free book ยซThe Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) ๐ยป - read online or download for free at americanlibrarybooks.com
- Author: Charles Darwin
- Performer: -
Read book online ยซThe Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) ๐ยป. Author - Charles Darwin
[page 8]
introduced a superfluous number of diagrams; but they take up less space than a full description of the movements. Almost all the sketches of plants asleep, etc., were carefully drawn for us by Mr. George Darwin.
As shoots, leaves, etc., in circumnutating bend more and more, first in one direction and then in another, they were necessarily viewed at different times more or less obliquely; and as the dots were made on a flat surface, the apparent amount of movement is exaggerated according to the degree of obliquity of the point of view. It would, therefore, have been a much better plan to have used hemispherical glasses, if we had possessed them of all sizes, and if the bending part of the shoot had been distinctly hinged and could have been placed so as to have formed one of the radii of the sphere. But even in this case it would have been necessary afterwards to have projected the figures on paper; so that complete accuracy could not have been attained. From the distortion of our figures, owing to the above causes, they are of no use to any one who wishes to know the exact amount of movement, or the exact course pursued; but they serve excellently for ascertaining whether or not the part moved at all, as well as the general character of the movement.]
In the following chapters, the movements of a considerable number of plants are described; and the species have been arranged according to the system adopted by Hooker in Le Maout and Decaisneโs โDescriptive Botany.โ No one who is not investigating the present subject need read all the details, which, however, we have thought it advisable to give. To save the reader trouble, the conclusions and most of the more important parts have been printed in larger type than the other parts. He may, if he thinks fit, read the last chapter first, as it includes a summary of the whole volume; and he will thus see what points interest him, and on which he requires the full evidence.
Finally, we must have the pleasure of returning our [page 9]
sincere thanks to Sir Joseph Hooker and to Mr. W. Thiselton Dyer for their great kindness, in not only sending us plants from Kew, but in procuring others from several sources when they were required for our observations; also, for naming many species, and giving us information on various points.
[page 10]
CHAPTER I.
THE CIRCUMNUTATING MOVEMENTS OF SEEDLING PLANTS.
Brassica oleracea, circumnutation of the radicle, of the arched hypocotyl whilst still buried beneath the ground, whilst rising above the ground and straightening itself, and when erectโCircumnutation of the cotyledonsโ
Rate of movementโAnalogous observations on various organs in species of Githago, Gossypium, Oxalis, Tropaeolum, Citrus, Aesculus, of several Leguminous and Cucurbitaceous genera, Opuntia, Helianthus, Primula, Cyclamen, Stapelia, Cerinthe, Nolana, Solanum, Beta, Ricinus, Quercus, Corylus, Pinus, Cycas, Canna, Allium, Asparagus, Phalaris, Zea, Avena, Nephrodium, and Selaginella.
THE following chapter is devoted to the circumnutating movements of the radicles, hypocotyls, and cotyledons of seedling plants; and, when the cotyledons do not rise above the ground, to the movements of the epicotyl.
But in a future chapter we shall have to recur to the movements of certain cotyledons which sleep at night.
[Brassica oleracea (Cruciferae)โ.โFuller details will be given with respect to the movements in this case than in any other, as space and time will thus ultimately be saved.
Radicle.โA seed with the radicle projecting .05 inch was fastened with shellac to a little plate of zinc, so that the radicle stood up vertically; and a fine glass filament was then fixed near its base, that is, close to the seed-coats. The seed was surrounded by little bits of wet sponge, and the movement of the bead at the end of the filament was traced (Fig. 1) during sixty hours. In this time the radicle increased in length from .05
to .11 inch. Had the filament been attached at first close to the apex of the radicle, and if it could have remained there all the time, the movement exhibited would have
[page 11]
been much greater, for at the close of our observations the tip, instead of standing vertically upwards, had become bowed downwards through geotropism, so as almost to touch the zinc plate. As far as we could roughly ascertain by measurements made with compasses on other seeds, the tip alone, for a length of only 2/100 to 3/100 of an inch, is acted on by geotropism. But the tracing shows that the basal part of the radicle continued to circumnutate irregularly during the whole time. The actual extreme amount of movement of the bead at the end of the filament was nearly .05 inch, but to what extent the movement of the radicle was magnified by the filament, which was nearly 3/4 inch in length, it was impossible to estimate.
Fig. 1. Brassica oleracea: circumnutation of radicle, traced on horizontal glass, from 9 A.M. Jan. 31st to 9 P.M. Feb. 2nd. Movement of bead at end of filament magnified about 40 times.
Another seed was treated and observed in the same manner, but the radicle in this case protruded .1 inch, and was not Fig. 2. Brassica oleracea: circumnutating and geotropic movement of radicle, traced on horizontal glass during 46 hours.
fastened so as to project quite vertically upwards. The filament was affixed close to its base. The tracing (Fig. 2, reduced by half) shows the movement from 9 A.M. Jan. 31st to 7 A.M. Feb. 2nd; but it continued to move during the whole of the
[page 12]
2nd in the same general direction, and in a similar zigzag manner. From the radicle not being quite perpendicular when the filament was affixed geotropism came into play at once; but the irregular zigzag course shows that there was growth (probably preceded by turgescence), sometimes on one and sometimes on another side. Occasionally the bead remained stationary for about an hour, and then probably growth occurred on the side opposite to that which caused the geotropic curvature. In the case previously described the basal part of the very short radicle from being turned vertically upwards, was at first very little affected by geotropism.
Filaments were affixed in two other instances to rather longer radicles protruding obliquely from seeds which had been turned upside down; and in these cases the lines traced on the horizontal glasses were only slightly zigzag, and the movement was always in the same general direction, through the action of geotropism. All these observations are liable to several causes of error, but we believe, from what will hereafter be shown with respect to the movements of the radicles of other plants, that they may be largely trusted.
Hypocotyl.โThe hypocotyl protrudes through the seed-coats as a rectangular projection, which grows rapidly into an arch like the letter U turned upside down; the cotyledons being still enclosed within the seed. In whatever position the seed may be embedded in the earth or otherwise fixed, both legs of the arch bend upwards through apogeotropism, and thus rise vertically above the ground. As soon as this has taken place, or even earlier, the inner or concave surface of the arch grows more quickly than the upper or convex surface; and this tends to separate the two legs and aids in drawing the cotyledons out of the buried seed-coats. By the growth of the whole arch the cotyledons are ultimately dragged from beneath the ground, even from a considerable depth; and now the hypocotyl quickly straightens itself by the increased growth of the concave side.
Even whilst the arched or doubled hypocotyl is still beneath the ground, it circumnutates as much as the pressure of the surrounding soil will permit; but this was difficult to observe, because as soon as the arch is freed from lateral pressure the two legs begin to separate, even at a very early age, before the arch would naturally have reached the surface. Seeds were allowed to germinate on the surface of damp earth, and after they had fixed themselves by their radicles, and after the, as yet, only [page 13]
slightly arched hypocotyl had become nearly vertical, a glass filament was affixed on two occasions near to the base of the basal leg (i.e. the one in connection with the radicle), and its movements were traced in darkness on a horizontal glass. The result was that long lines were formed running in nearly the plane of the vertical arch, due to the early separation of the two legs now freed from pressure; but as the lines were zigzag, showing lateral movement, the arch must have been circumnutating, whilst it was straightening itself by growth along its inner or concave surface.
A somewhat different method of observation was next followed: Fig. 3. Brassica oleracea: circumnutating movement of buried and arched hypocotyl (dimly illuminated from above), traced on horizontal glass during 45 hours. Movement of bead of filament magnified about 25 times, and here reduced to one-half of original scale.
as soon as the earth with seeds in a pot began to crack, the surface was removed in parts to the depth of .2 inch; and a filament was fixed to the basal leg of a buried and arched hypocotyl, just above the summit of the radicle. The cotyledons were still almost completely enclosed within the much-cracked seed-coats; and these were again covered up with damp adhesive soil pressed pretty firmly down. The movement of the filament was traced (Fig. 3) from 11 A.M. Feb. 5th till 8 A.M. Feb. 7th. By this latter period the cotyledons had been dragged from beneath the pressed-down earth, but the upper part of the hypocotyl still formed nearly a right angle with the lower part. The tracing shows that the arched hypocotyl tends at this early [page 14]
age to circumnutate irregularly. On the first day the greater movement (from right to left in the figure) was not in the plane of the vertical and arched hypocotyl, but at right angles to it, or in the plane of the two cotyledons, which were still in close contact. The basal leg of the arch at the time when the filament was affixed to it, was already bowed considerably backwards, or from the cotyledons; had the filament been affixed before this bowing occurred, the chief movement would have been at right angles to that shown in the figure. A filament was attached to another buried hypocotyl of the same age, and it moved in a similar general manner, but the line traced was not so complex. This hypocotyl became almost straight, and the cotyledons were dragged from beneath the ground on the evening of the second day.
Fig. 4. Brassica oleracea: circumnutating movement of buried and arched hypocotyl, with the two legs of the arch tied together, traced on horizontal glass during 33 ๏ฟฝ hours. Movement of the bead of filament magnified about 26 times, and here reduced to one-half original scale.
Before the above observations were made, some arched hypocotyls buried at the depth of a quarter of an inch were uncovered; and in order to prevent the two legs of the arch from beginning to separate at once, they were tied together with fine silk. This was done partly because we wished to ascertain how long the hypocotyl, in its arched condition, would continue to move, and whether the movement when not masked and disturbed by the straightening process, indicated circumnutation. Firstly a filament was fixed to the basal leg of an arched
Comments (0)