The Elements of Geology by William Harmon Norton (feel good novels .txt) π
It is assumed that field work will be introduced with thecommencement of the study. The common rocks are therefore brieflydescribed in the opening chapters. The drift also receives earlymention, and teachers in the northern states who begin geology inthe fall may prefer to take up the chapter on the Pleistoceneimmediately after the chapter on glaciers.
Simple diagrams have been used freely, not only because they areoften clearer than any verbal statement, but also because theyreadily lend themselves to reproduction on the blackboard by thepupil. The text will suggest others which the pupil may invent. Itis hoped that the photographic views may also be used forexercises in the class room.
The generous aid of many friends is recognized with special
Read free book Β«The Elements of Geology by William Harmon Norton (feel good novels .txt) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: William Harmon Norton
- Performer: -
Read book online Β«The Elements of Geology by William Harmon Norton (feel good novels .txt) πΒ». Author - William Harmon Norton
COLUMNAR STRUCTURE. Just as wet starch contracts on drying to prismatic forms, so lava often contracts on cooling to a mass of close-set, prismatic, and commonly six-sided columns, which stand at right angles to the cooling surface. The upper portion of a flow, on rapid cooling from the surface exposed to the air, may contract to a confused mass of small and irregular prisms; while the remainder forms large and beautifully regular columns, which have grown upward by slow cooling from beneath.
FRAGMENTAL MATERIALSRocks weighing many tons are often thrown from a volcano at the beginning of an outburst by the breaking up of the solidofied floor of the crater; and during the progress of an eruption large blocks may be torn from the throat of the volcano by the outrush of steam. But the most important fragmental materials are those derived from the lava itself. As lava rises in the pipe, the steam which permeates it is released from pressure and explodes, hurling the lava into the air in fragments of all sizes,βlarge pieces of scoria, LAPILLI (fragments the size of a pea or walnut), volcanic "sand" and volcanic "ashes." The latter resemble in appearance the ashes of wood or coal, but they are not in any sense, like them, a residue after combustion.
Volcanic ashes are produced in several ways: lava rising in the volcanic duct is exploded into fine dust by the steam which permeates it; glassy lava, hurled into the air and cooled suddenly, is brought into a state of high strain and tension, and, like Prince Rupert's drops, flies to pieces at the least provocation. The clash of rising and falling projectiles also produces some dust, a fair sample of which may be made by grating together two pieces of pumice.
Beds of volcanic ash occur widely among recent deposits in the western United States. In Nebraska ash beds are found in twenty counties, and are often as white as powdered pumice. The beds grow thicker and coarser toward the southwestern part of the state, where their thickness sometimes reaches fifty feet. In what direction would you look for the now extinct volcano whose explosive eruptions are thus recorded?
TUFF. This is a convenient term designating any rock composed of volcanic fragments. Coarse tuffs of angular fragments are called VOLCANIC BRECIA, and when the fragments have been rounded and sorted by water the rock is termed a VOLCANIC CONGLOMERATE. Even when deposited in the open air, as on the slopes of a volcano, tuffs may be rudely bedded and their fragments more or less rounded, and unless marine shells or the remains of land plants and animals are found as fossils in them, there is often considerable difficulty in telling whether they were laid in water or in air. In either case they soon become consolidated. Chemical deposits from percolating waters fill the interstices, and the bed of loose fragments is cemented to hard rock.
The materials of which tuffs are composed are easily recognized as volcanic in their origin. The fragments are more or less cellular, according to the degree to which they were distended with steam when in a molten state, and even in the finest dust one may see the glass or the crystals of lava from which it was derived. Tuffs often contain VOCLANIC BOMBS,βballs of lava which took shape while whirling in the air, and solidified before falling to the ground.
ANCIENT VOLCANIC ROCKS. It is in these materials and structures which we have described that volcanoes leave some of their most enduring records. Even the volcanic rocks of the earliest geological ages, uplifted after long burial beneath the sea and exposed to view by deep erosion, are recognized and their history read despite the many changes which they may have undergone. A sheet of ancient lava may be distinguished by its composition from the sediments among which it is imbedded. The direction of its flow lines may be noted. The cellular and slaggy surface where the pasty lava was distended by escaping steam is recognized by the amygdules which now fill the ancient steam blebs. In a pile of successive sheets of lava each flow may be distinguished and its thickness measured; for the surface of each sheet is glassy and scoriaceous, while beneath its upper portions the lava of each flow is more dense and stony. The length of time which elapsed before a sheet was buried beneath the materials of succeeding eruptions may be told by the amount of weathering which it had undergone, the depth of ancient soilβnow baked to solid rockβupon it, and the erosion which it had suffered in the interval.
If the flow occurred from some submarine volcano, we may recognize the fact by the sea-laid sediments which cover it, filling the cracks and crevices of its upper surface and containing pieces of lava washed from it in their basal layers.
Long-buried glassy lavas devitrify, or pass to a stony condition, under the unceasing action of underground waters; but their flow lines and perlitic and spherulitic structures remain to tell of their original state.
Ancient tuffs are known by the fragmental character of their volcanic material, even though they have been altered to firm rock. Some remains of land animals and plants may be found imbedded to tell that the beds were laid in open air; while the remains of marine organisms would prove as surely that the tuffs were deposited in the sea.
In these ways ancient volcanoes have been recognized near Boston, in southeastern Pennsylvania, about Lake Superior, and in other regions of the United States.
THE LIFE HISTORY OF A VOLCANOThe invasion of a region by volcanic forces is attended by movements of the crust heralded by earthquakes. A fissure or a pipe is opened and the building of the cone or the spreading of wide lava sheets is begun.
VOLCANIC CONES. The shape of a volcanic cone depends chiefly on the materials erupted. Cones made of fragments may have sides as steep as the angle of repose, which in the case of coarse scoria is sometimes as high as thirty or forty degrees. About the base of the mountain the finer materials erupted are spread in more gentle slopes, and are also washed forward by rains and streams. The normal profile is thus a symmetric cone with a flaring base.
Cones built of lava vary in form according to the liquidity of the lava. Domes of gentle slope, as those of Hawaii, for example, are formed of basalt, which flows to long distances before it congeals. When superheated and emitted from many vents, this easily melted lava builds great plateaus, such as that of Iceland. On the other hand, lavas less fusible, or poured out at a lower temperature, stiffen when they have flowed but a short distance, and accumulate in a steep cone. Trachyte has been extruded in a state so viscid that it has formed steepsided domes like that of Sarcoui.
Most volcanoes are built, like Vesuvius, both of lava flows and of tuffs, and sections show that the structure of the cone consists of outward-dipping, alternating layers of lava, scoria, and ashes.
From time to time the cone is rent by the violence of explosions and by the weight of the column of lava in the pipe. The fissures are filled with lava and some discharge on the sides of the mountain, building parasitic cones, while all form dikes, which strengthen the pile with ribs of hard rock and make it more difficult to rend.
Great catastrophes are recorded in the shape of some volcanoes which consist of a circular rim perhaps miles in diameter, inclosing a vast crater or a caldera within which small cones may rise. We may infer that at some time the top of the mountain has been blown off, or has collapsed and been engulfed because some reservoir beneath had been emptied by long-continued eruptions.
The cone-building stage may be said to continue until eruptions of lava and fragmental materials cease altogether. Sooner or later the volcanic forces shift or die away, and no further eruptions add to the pile or replace its losses by erosion during periods of repose. Gases however are still emitted, and, as sulphur vapors are conspicuous among them, such vents are called SOLFATARAS. Mount Hood, in Oregon, is an example of a volcano sunk to this stage. From a steaming rift on its side there rise sulphurous fumes which, half a mile down the wind, will tarnish a silver coin.
GEYSERS AND HOT SPRINGS. The hot springs of volcanic regions are among the last vestiges of volcanic heat. Periodically eruptive boiling springs are termed geysers. In each of the geyser regions of the earthβthe Yellowstone National Park, Iceland, and New Zealandβthe ground water of the locality is supposed to be heated by ancient lavas that, because of the poor conductivity of the rock, still remain hot beneath the surface.
OLD FAITHFUL, one of the many geysers of the Yellowstone National Park, plays a fountain of boiling water a hundred feet in air; while clouds of vapor from the escaping steam ascend to several times that height. The eruptions take place at intervals of from seventy to ninety minutes. In repose the geyser is a quiet pool, occupying a craterlike depression in a conical mound some twelve feet high. The conduit of the spring is too irregular to be sounded. The mound is composed of porous silica deposited by the waters of the geyser.
Geysers erupt at intervals instead of continuously boiling, because their long, narrow, and often tortuous conduits do not permit a free circulation of the water. After an eruption the tube is refilled and the water again gradually becomes heated. Deep in the tube where it is in contact with hot lavas the water sooner or later reaches the boiling point, and bursting into steam shoots the water above it high in air.
CARBONATED SPRINGS. After all the other signs of life have gone, the ancient volcano may emit carbon dioxide as its dying breath. The springs of the region may long be charged with carbon dioxide, or carbonated, and where they rise through limestone may be expected to deposit large quantities of travertine. We should remember, however, that many carbonated springs, and many hot springs, are wholly independent of volcanoes.
THE DESTRUCTION OF THE CONE. As soon as the volcanic cone ceases to grow by eruptions the agents of erosion begin to wear it down, and the length of time that has elapsed since the period of active growth may be roughly measured by the degree to which the cone has been dissected. We infer that Mount Shasta, whose conical shape is still preserved despite the gullies one thousand feet deep which trench its sides, is younger than Mount Hood, which erosive agencies have carved to a pyramidal form. The pile of materials accumulated about a volcanic vent, no matter how vast in bulk, is at last swept entirely away. The cone of the volcano, active or extinct, is not old as the earth counts time; volcanoes are short- lived geological phenomena.
CRANDALL VOLCANO. This name is given to a dissected ancient volcano in the Yellowstone National Park, which once, it is estimated, reared its head thousands of feet above the surrounding country and greatly exceeded in bulk either Mount Shasta or Mount Etna. Not a line of the original mountain remains; all has been swept away by erosion except some four thousand feet of the base of the pile. This basal wreck now appears as a rugged region about thirty miles in diameter, trenched by deep valleys and cut into sharp peaks and precipitous ridges. In the center of the area is found the nucleus (N, Fig. 237),βa mass of coarsely crystalline rock that congealed deep in the old volcanic pipe. From it there radiate in all directions, like the spokes of a wheel, long dikes whose rock grows rapidly finer of grain as it leaves the vicinity of the once heated core. The remainder of the base of the ancient mountain is made of rudely bedded tuffs and volcanic breccia, with occasional flows of lava, some of the fragments of the breccia measuring as much as twenty feet in diameter. On the sides of canyons the breccia is carved by rain erosion to fantastic pinnacles. At different levels in the midst of these beds of tuff and lava are many old forest grounds. The stumps and trunks of the trees, now turned to stone, still in many cases stand upright where once they grew on the slopes of the mountain as it was building (Fig. 238). The great size and age of some of these trees indicate, the lapse of time between the eruption whose lavas or tuffs weathered to the soil on which they grew and the subsequent eruption which buried
Comments (0)