The Elements of Geology by William Harmon Norton (feel good novels .txt) ๐
It is assumed that field work will be introduced with thecommencement of the study. The common rocks are therefore brieflydescribed in the opening chapters. The drift also receives earlymention, and teachers in the northern states who begin geology inthe fall may prefer to take up the chapter on the Pleistoceneimmediately after the chapter on glaciers.
Simple diagrams have been used freely, not only because they areoften clearer than any verbal statement, but also because theyreadily lend themselves to reproduction on the blackboard by thepupil. The text will suggest others which the pupil may invent. Itis hoped that the photographic views may also be used forexercises in the class room.
The generous aid of many friends is recognized with special
Read free book ยซThe Elements of Geology by William Harmon Norton (feel good novels .txt) ๐ยป - read online or download for free at americanlibrarybooks.com
- Author: William Harmon Norton
- Performer: -
Read book online ยซThe Elements of Geology by William Harmon Norton (feel good novels .txt) ๐ยป. Author - William Harmon Norton
GRANITE, as we have learned already, is composed of three minerals,โquartz, feldspar, and mica. According to the color of the feldspar the rock may be red, or pink, or gray. Hornblendeโa black or dark green mineral, an iron-magnesian silicate, about as hard as feldsparโis sometimes found as a fourth constituent, and the rock is then known as HORNBLENDIC GRANITE. Granite is an acidic rock corresponding to rhyolite in chemical composition. We may believe that the same molten mass which supplies this acidic lava in surface flows solidifies as granite deep below ground in the volcanic reservoir.
SYENITE, composed of feldspar and mica, has consolidated from a less siliceous mixture than has granite.
DIORITE, still less siliceous, is composed of hornblende and feldspar,โthe latter mineral being of different variety from the feldspar of granite and syenite.
GABBRO, a typical basic rock, corresponds to basalt in chemical composition. It is a dark, heavy, coarsely crystalline aggregate of feldspar and AUGITE (a dark mineral allied to hornblende). It often contains MAGNETITE (the magnetic black oxide of iron) and OLIVINE (a greenish magnesian silicate).
In the northern states all these types, and many others also of the vast number of varieties of intrusive rocks, can be found among the rocks of the drift brought from the areas of igneous rock in Canada and the states of our northern border.
SUMMARY. The records of geology prove that since the earliest of their annals tremendous forces have been active in the earth. In all the past, under pressures inconceivably great, molten rock has been driven upward into the rocks of the crust. It has squeezed into fissures forming dikes; it has burrowed among the strata as intrusive sheets; it has melted the rocks away or lifted the overlying strata, filling the chambers which it has made with intrusive masses. During all geological ages molten rock has found way to the surface, and volcanoes have darkened the sky with clouds of ashes and poured streams of glowing lava down their sides. The older strata,โthe strata which have been most deeply buried,โand especially those which have suffered most from folding and from fracture, show the largest amount of igneous intrusions. The molten rock which has been driven from the earth's interior to within the crust or to the surface during geologic time must be reckoned in millions of cubic miles.
THE INTERIOR CONDITION OF THE EARTH AND CAUSES OF VULCANISM AND DEFORMATIONThe problems of volcanoes and of deformation are so closely connected with that of the earth's interior that we may consider them together. Few of these problems are solved, and we may only state some known facts and the probable conclusions which may be drawn as inferences from them.
THE INTERIOR OF THE EARTH IS HOT. Volcanoes prove that in many parts of the earth there exist within reach of the surface regions of such intense heat that the rock is in a molten condition. Deep wells and mines show everywhere an increase in temperature below the surface shell affected by the heat of summer and the cold of winter,โa shell in temperate latitudes sixty or seventy feet thick. Thus in a boring more than a mile deep at Schladebach, Germany, the earth grows warmer at the rate of 1 degrees F. for every sixty-seven feet as we descend. Taking the average rate of increase at one degree for every sixty feet of descent, and assuming that this rate, observed at the moderate distances open to observation, continues to at least thirty-five miles, the temperature at that depth must be more than three thousand degrees,โa temperature at which all ordinary rocks would melt at the earth's surface. The rate of increase in temperature probably lessens as we go downward, and it may not be appreciable below a few hundred miles. But there is no reason to doubt that THE INTERIOR OF THE EARTH IS INTENSELY HOT. Below a depth of one or two score miles we may imagine the rocks everywhere glowing with heat.
Although the heat of the interior is great enough to melt all rocks at atmospheric pressure, it does not follow that the interior is fluid. Pressure raises the fusing point of rocks, and the weight of the crust may keep the interior in what may be called a solid state, although so hot as to be a liquid or a gas were the pressure to be removed.
THE INTERIOR OF THE EARTH IS RIGID AND HEAVY. The earth behaves as a globe more rigid than glass under the attractions of the sun and moon. It is not deformed by these stresses as is the ocean in the tides, proving that it is not a fluid ball covered with a yielding crust a few miles thick. Earthquakes pass through the earth faster than they would were it of solid steel. Hence the rocks of the interior are highly elastic, being brought by pressure to a compact, continuous condition unbroken by the cracks and vesicles of surface rocks. THE INTERIOR OF THE EARTH IS RIGID
The common rocks of the crust are about two and a half times heavier than water, while the earth as a whole weighs five and six-tenths times as much as a globe of water of the same size. THE INTERIOR IS THEREFORE MUCH MORE HEAVY THAN THE CRUST. This may be caused in part by compression of the interior under the enormous weight of the crust, and in part also by an assortment of material, the heavier substances, such as the heavy metals, having gravitated towards the center.
Between the crust, which is solid because it is cool, and the interior, which is hot enough to melt were it not for the pressure which keeps it dense and rigid, there may be an intermediate zone in which heat and pressure are so evenly balanced that here rock liquefies whenever and wherever the pressure upon it may be relieved by movements of the crust. It is perhaps from such a subcrustal layer that the lava of volcanoes is supplied.
THE CAUSES OF VOLCANIC ACTION. It is now generally believed that the HEAT of volcanoes is that of the earth's interior. Other causes, such as friction and crushing in the making of mountains and the chemical reactions between oxidizing agents of the crust and the unoxidized interior, have been suggested, but to most geologists they seem inadequate.
There is much difference of opinion as to the FORCE which causes molten rock to rise to the surface in the ducts of volcanoes. Steam is so evidently concerned in explosive eruptions that many believe that lava is driven upward by the expansive force of the steam with which it is charged, much as a viscid liquid rises and boils over in a test tube or kettle.
But in quiet eruptions, and still more in the irruption of intrusive sheets and masses, there is little if any evidence that steam is the driving force. It is therefore believed by many geologists that it is PRESSURE DUE TO CRUSTAL MOVEMENTS AND INTERNAL STRESSES which squeezes molten rock from below into fissures and ducts in the crust. It is held by some that where considerable water is supplied to the rising column of lava, as from the ground water of the surrounding region, and where the lava is viscid so that steam does not readily escape, the eruption is of the explosive type; when these conditions do not obtain, the lava outwells quietly, as in the Hawaiian volcanoes. It is held by others not only that volcanoes are due to the outflow of the earth's deep-seated heat, but also that the steam and other emitted gases are for the most part native to the earth's interior and never have had place in the circulation of atmospheric and ground waters.
VOLCANIC ACTION AND DEFORMATION. Volcanoes do not occur on wide plains or among ancient mountains. On the other hand, where movements of the earth's crust are in progress in the uplift of high plateaus, and still more in mountain making, molten rock may reach the surface, or may be driven upward toward it forming great intrusive masses. Thus extensive lava flows accompanied the upheaval of the block mountains of western North America and the uplift of the Colorado plateau. A line of recent volcanoes may be traced along the system of rift valleys which extends from the Jordan and Dead Sea through eastern Africa to Lake Nyassa. The volcanoes of the Andes show how conspicuous volcanic action may be in young rising ranges. Folded mountains often show a core of igneous rock, which by long erosion has come to form the axis and the highest peaks of the range, as if the molten rock had been squeezed up under the rising upfolds. As we decipher the records of the rocks in historical geology we shall see more fully how, in all the past, volcanic action has characterized the periods of great crustal movements, and how it has been absent when and where the earth's crust has remained comparatively at rest.
THE CAUSES OF DEFORMATION. As the earth's interior, or nucleus, is highly heated it must be constantly though slowly losing its heat by conduction through the crust and into space; and since the nucleus is cooling it must also be contracting. The nucleus has contracted also because of the extrusion of molten matter, the loss of constituent gases given off in volcanic eruptions, and (still more important) the compression and consolidation of its material under gravity. As the nucleus contracts, it tends to draw away from the cooled and solid crust, and the latter settles, adapting itself to the shrinking nucleus much as the skin of a withering apple wrinkles down upon the shrunken fruit. The unsupported weight of the spherical crust develops enormous tangential pressures, similar to the stresses of an arch or dome, and when these lateral thrusts accumulate beyond the power of resistance the solid rock is warped and folded and broken.
Since the planet attained its present mass it has thus been lessening in volume. Notwithstanding local and relative upheavals the earth's surface on the whole has drawn nearer and nearer to the center. The portions of the lithosphere which have been carried down the farthest have received the waters of the oceans, while those portions which have been carried down the least have emerged as continents.
Although it serves our convenience to refer the movements of the crust to the sea level as datum plane, it is understood that this level is by no means fixed. Changes in the ocean basins increase or reduce their capacity and thus lower or raise the level of the sea. But since these basins are connected, the effect of any change upon the water level is so distributed that it is far less noticeable than a corresponding change would be upon the land.
CHAPTER XIII METAMORPHISM AND MINERAL VEINSUnder the action of internal agencies rocks of all kinds may be rendered harder, more firmly cemented, and more crystalline. These processes are known as METAMORPHISM, and the rocks affected, whether originally sedimentary or igneous, are called METAMORPHIC ROCKS. We may contrast with metamorphism the action of external agencies in weathering, which render rocks less coherent by dissolving their soluble parts and breaking down their crystalline grains.
CONTACT METAMORPHISM. Rocks beneath a lava flow or in contact with igneous intrusions are found to be metamorphosed to various degrees by the heat of the cooling mass. The adjacent strata may be changed only in color, hardness, and texture. Thus, next to a dike, bituminous coal may be baked to coke or anthracite, and chalk and limestone to crystalline marble. Sandstone may be converted into quartzite, and shale into ARGILLITE, a compact, massive clay rock. New minerals may also be developed. In sedimentary rocks there may be produced crystals of mica and of GARNET (a mineral as hard as quartz, commonly occurring in red, twelve-sided crystals). Where the changes are most profound, rocks may be wholly made over in structure and mineral composition.
In contact metamorphism, thin sheets of molten rock produce less effect than thicker ones. The strongest heat effects are naturally caused by bosses and regional intrusions, and the zone of change about them may be several miles in width. In these changes heated waters and vapors from the masses of igneous rocks undoubtedly play a very important part.
Which will be more strongly altered, the rocks about a closed dike in which lava began to cool as soon as it filled the fissure, or the rocks about a dike which opened on the surface and through which the molten rock flowed for some time?
Taking into consideration the part played by heated waters, which will produce the most far-reaching metamorphism, dikes which cut across the bedding planes or intrusive sheets which are thrust between the strata?
REGIONAL METAMORPHISM. Metamorphic rocks occur wide-spread in many regions, often hundreds of square miles in area, where such extensive
Comments (0)