American library books Β» Science Β» Amusements in Mathematics by Henry Ernest Dudeney (best free ebook reader for pc .txt) πŸ“•

Read book online Β«Amusements in Mathematics by Henry Ernest Dudeney (best free ebook reader for pc .txt) πŸ“•Β».   Author   -   Henry Ernest Dudeney



1 ... 29 30 31 32 33 34 35 36 37 ... 87
Go to page:
Lawrence's little jokes, and one boy (the wag of the village) who got his ears pulled by the old gentleman for stealing his "chestnuts" went so far as to call him "a silly old chess-protector!"

One year he had a large square field divided into forty-nine square plots, as shown in the illustration. The white squares were sown with wheat and the black squares with barley. When the harvest time came round he gave orders that his men were first to cut the corn in the patch marked 1, and that each successive cutting should be exactly a knight's move from the last one, the thirteenth cutting being in the patch marked 13, the twenty-fifth in the patch marked 25, the thirty-seventh in the one marked 37, and the last, or forty-ninth cutting, in the patch marked 49. This was too much for poor Hodge, and each day Farmer Lawrence had to go down to the field and show which piece had to be operated upon. But the problem will perhaps present no difficulty to my readers.

336.β€”THE GREYHOUND PUZZLE.

In this puzzle the twenty kennels do not communicate with one another by doors, but are divided off by a low wall. The solitary occupant is the greyhound which lives in the kennel in the top left-hand corner. When he is allowed his liberty he has to obtain it by visiting every kennel once and only once in a series of knight's moves, ending at the bottom right-hand corner, which is open to the world. The lines in the above diagram show one solution. The puzzle is to discover in how many different ways the greyhound may thus make his exit from his corner kennel.

337.β€”THE FOUR KANGAROOS.

In introducing a little Commonwealth problem, I must first explain that the diagram represents the sixty-four fields, all properly fenced off from one another, of an Australian settlement, though I need hardly say that our kith and kin "down under" always do set out their land in this methodical and exact manner. It will be seen that in every one of the four corners is a kangaroo. Why kangaroos have a marked preference for corner plots has never been satisfactorily explained, and it would be out of place to discuss the point here. I should also add that kangaroos, as is well known, always leap in what we call "knight's moves." In fact, chess players would probably have adopted the better term "kangaroo's move" had not chess been invented before kangaroos.

The puzzle is simply this. One morning each kangaroo went for his morning hop, and in sixteen consecutive knight's leaps visited just fifteen different fields and jumped back to his corner. No field was visited by more than one of the kangaroos. The diagram shows how they arranged matters. What you are asked to do is to show how they might have performed the feat without any kangaroo ever crossing the horizontal line in the middle of the square that divides the board into two equal parts.

338.β€”THE BOARD IN COMPARTMENTS.

We cannot divide the ordinary chessboard into four equal square compartments, and describe a complete tour, or even path, in each compartment. But we may divide it into four compartments, as in the illustration, two containing each twenty squares, and the other two each twelve squares, and so obtain an interesting puzzle. You are asked to describe a complete re-entrant tour on this board, starting where you like, but visiting every square in each successive compartment before passing into another one, and making the final leap back to the square from which the knight set out. It is not difficult, but will be found very entertaining and not uninstructive.

Whether a re-entrant "tour" or a complete knight's "path" is possible or not on a rectangular board of given dimensions depends not only on its dimensions, but also on its shape. A tour is obviously not possible on a board containing an odd number of cells, such as 5 by 5 or 7 by 7, for this reason: Every successive leap of the knight must be from a white square to a black and a black to a white alternately. But if there be an odd number of cells or squares there must be one more square of one colour than of the other, therefore the path must begin from a square of the colour that is in excess, and end on a similar colour, and as a knight's move from one colour to a similar colour is impossible the path cannot be re-entrant. But a perfect tour may be made on a rectangular board of any dimensions provided the number of squares be even, and that the number of squares on one side be not less than 6 and on the other not less than 5. In other words, the smallest rectangular board on which a re-entrant tour is possible is one that is 6 by 5.

A complete knight's path (not re-entrant) over all the squares of a board is never possible if there be only two squares on one side; nor is it possible on a square board of smaller dimensions than 5 by 5. So that on a board 4 by 4 we can neither describe a knight's tour nor a complete knight's path; we must leave one square unvisited. Yet on a board 4 by 3 (containing four squares fewer) a complete path may be described in sixteen different ways. It may interest the reader to discover all these. Every path that starts from and ends at different squares is here counted as a different solution, and even reverse routes are called different.

339.β€”THE FOUR KNIGHTS' TOURS.

I will repeat that if a chessboard be cut into four equal parts, as indicated by the dark lines in the illustration, it is not possible to perform a knight's tour, either re-entrant or not, on one of the parts. The best re-entrant attempt is shown, in which each knight has to trespass twice on other parts. The puzzle is to cut the board differently into four parts, each of the same size and shape, so that a re-entrant knight's tour may be made on each part. Cuts along the dotted lines will not do, as the four central squares of the board would be either detached or hanging on by a mere thread.

340.β€”THE CUBIC KNIGHT'S TOUR.

Some few years ago I happened to read somewhere that Abnit Vandermonde, a clever mathematician, who was born in 1736 and died in 1793, had devoted a good deal of study to the question of knight's tours. Beyond what may be gathered from a few fragmentary references, I am not aware of the exact nature or results of his investigations, but one thing attracted my attention, and that was the statement that he had proposed the question of a tour of the knight over the six surfaces of a cube, each surface being a chessboard. Whether he obtained a solution or not I do not know, but I have never seen one published. So I at once set to work to master this interesting problem. Perhaps the reader may like to attempt it.

341.β€”THE FOUR FROGS.

In the illustration we have eight toadstools, with white frogs on 1 and 3 and black frogs on 6 and 8. The puzzle is to move one frog at a time, in any order, along one of the straight lines from toadstool to toadstool, until they have exchanged places, the white frogs being left on 6 and 8 and the black ones on 1 and 3. If you use four counters on a simple diagram, you will find this quite easy, but it is a little more puzzling to do it in only seven plays, any number of successive moves by one frog counting as one play. Of course, more than one frog cannot be on a toadstool at the same time.

342.β€”THE MANDARIN'S PUZZLE.

The following puzzle has an added interest from the circumstance that a correct solution of it secured for a certain young Chinaman the hand of his charming bride. The wealthiest mandarin within a radius of a hundred miles of Peking was Hi-Chum-Chop, and his beautiful daughter, Peeky-Bo, had innumerable admirers. One of her most ardent lovers was Winky-Hi, and when he asked the old mandarin for his consent to their marriage, Hi-Chum-Chop presented him with the following puzzle and promised his consent if the youth brought him the correct answer within a week. Winky-Hi, following a habit which obtains among certain solvers to this day, gave it to all his friends, and when he had compared their solutions he handed in the best one as his own. Luckily it was quite right. The mandarin thereupon fulfilled his promise. The fatted pup was killed for the wedding feast, and when Hi-Chum-Chop passed Winky-Hi the liver wing all present knew that it was a token of eternal goodwill, in accordance with Chinese custom from time immemorial.

The mandarin had a table divided into twenty-five squares, as shown in the diagram. On each of twenty-four of these squares was placed a numbered counter, just as I have indicated. The puzzle is to get the counters in numerical order by moving them one at a time in what we call "knight's moves." Counter 1 should be where 16 is, 2 where 11 is, 4 where 13 now is, and so on. It will be seen that all the counters on shaded squares are in their proper positions. Of course, two counters may never be on a square at the same time. Can you perform the feat in the fewest possible moves?

In order to make the manner of moving perfectly clear I will point out that the first knight's move can only be made by 1 or by 2 or by 10. Supposing 1 moves, then the next move must be by 23, 4, 8, or 21. As there is never more than one square vacant, the order in which the counters move may be written out as follows: 1β€”21β€”14β€”18β€”22, etc. A rough diagram should be made on a larger scale for practice, and numbered counters or pieces of cardboard used.

343.β€”EXERCISE FOR PRISONERS.

The following is the plan of the north wing of a certain gaol, showing the sixteen cells all communicating by open doorways. Fifteen prisoners were numbered and arranged in the cells as shown. They were allowed to change their cells as much as they liked, but if two prisoners were ever in the same cell together there was a severe punishment promised them.

Now, in order to reduce their growing obesity, and to combine physical exercise with mental recreation, the prisoners decided, on the suggestion of one of their number who was interested in knight's tours, to try to form themselves into a perfect knight's path without breaking the prison regulations, and leaving the bottom right-hand corner cell vacant, as originally. The joke of the matter is that the arrangement at which they arrived was as follows:β€”

8 3 12 1 11 14 9 6 4 7 2 13 15 10 5

The warders failed to detect the important fact that the men could not possibly get into this position without two of them having been at some time in the same cell together. Make the attempt with counters on a ruled diagram, and you will find that this is so.

1 ... 29 30 31 32 33 34 35 36 37 ... 87
Go to page:

Free e-book: Β«Amusements in Mathematics by Henry Ernest Dudeney (best free ebook reader for pc .txt) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment