A History of Science, vol 3 by Henry Smith Williams (sites to read books for free TXT) π
CHAPTER VI
. MODERN THEORIES OF HEAT AND LIGHTRead free book Β«A History of Science, vol 3 by Henry Smith Williams (sites to read books for free TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Henry Smith Williams
- Performer: -
Read book online Β«A History of Science, vol 3 by Henry Smith Williams (sites to read books for free TXT) πΒ». Author - Henry Smith Williams
We repeat, the motion cannot have been annihilated; and contrary, or positive and negative, motions cannot be regarded as = o any more than contrary motions can come out of nothing, or a weight can raise itself.
βWithout the recognition of a causal relation between motion and heat, it is just as difficult to explain the production of heat as it is to give any account of the motion that disappears. The heat cannot be derived from the diminution of the volume of the rubbing substances. It is well known that two pieces of ice may be melted by rubbing them together in vacuo; but let any one try to convert ice into water by pressure, however enormous. The author has found that water undergoes a rise of temperature when shaken violently.
The water so heated (from twelve to thirteen degrees centigrade) has a greater bulk after being shaken than it had before. Whence now comes this quantity of heat, which by repeated shaking may be called into existence in the same apparatus as often as we please?
The vibratory hypothesis of heat is an approach towards the doctrine of heat being the effect of motion, but it does not favor the admission of this causal relation in its full generality. It rather lays the chief stress on restless oscillations.
βIf it be considered as now established that in many cases no other effect of motion can be traced except heat, and that no other cause than motion can be found for the heat that is produced, we prefer the assumption that heat proceeds from motion to the assumption of a cause without effect and of an effect without a cause. Just as the chemist, instead of allowing oxygen and hydrogen to disappear without further investigation, and water to be produced in some inexplicable manner, establishes a connection between oxygen and hydrogen on the one hand, and water on the other.
βWe may conceive the natural connection existing between falling force, motion, and heat as follows: We know that heat makes its appearance when the separate particles of a body approach nearer to each other; condensation produces heat. And what applies to the smallest particles of matter, and the smallest intervals between them, must also apply to large masses and to measurable distances. The falling of a weight is a diminution of the bulk of the earth, and must therefore without doubt be related to the quantity of heat thereby developed; this quantity of heat must be proportional to the greatness of the weight and its distance from the ground. From this point of view we are easily led to the equations between falling force, motion, and heat that have already been discussed.
βBut just as little as the connection between falling force and motion authorizes the conclusion that the essence of falling force is motion, can such a conclusion be adopted in the case of heat. We are, on the contrary, rather inclined to infer that, before it can become heat, motion must cease to exist as motion, whether simple, or vibratory, as in the case of light and radiant heat, etc.
βIf falling force and motion are equivalent to heat, heat must also naturally be equivalent to motion and falling force. Just as heat appears as an EFFECT of the diminution of bulk and of the cessation of motion, so also does heat disappear as a CAUSE when its effects are produced in the shape of motion, expansion, or raising of weight.
βIn water-mills the continual diminution in bulk which the earth undergoes, owing to the fall of the water, gives rise to motion, which afterwards disappears again, calling forth unceasingly a great quantity of heat; and, inversely, the steam-engine serves to decompose heat again into motion or the raising of weights. A locomotive with its train may be compared to a distilling apparatus; the heat applied under the boiler passes off as motion, and this is deposited again as heat at the axles of the wheels.β
Mayer then closes his paper with the following deduction: βThe solution of the equations subsisting between falling force and motion requires that the space fallen through in a given timeβe. g., the first secondβ
should be experimentally determined. In like manner, the solution of the equations subsisting between falling force and motion on the one hand and heat on the other requires an answer to the question, How great is the quantity of heat which corresponds to a given quantity of motion or falling force? For instance, we must ascertain how high a given weight requires to be raised above the ground in order that its falling force maybe equivalent to the raising of the temperature of an equal weight of water from 0 degrees to 1 degrees centigrade. The attempt to show that such an equation is the expression of a physical truth may be regarded as the substance of the foregoing remarks.
βBy applying the principles that have been set forth to the relations subsisting between the temperature and the volume of gases, we find that the sinking of a mercury column by which a gas is compressed is equivalent to the quantity of heat set free by the compression; and hence it follows, the ratio between the capacity for heat of air under constant pressure and its capacity under constant volume being taken as = 1.421, that the warming of a given weight of water from 0 degrees to 1 degrees centigrade corresponds to the fall of an equal
weight from the height of about three hundred and sixty-five metres. If we compare with this result the working of our best steam-engines, we see how small a part only of the heat applied under the boiler is really transformed into motion or the raising of weights; and this may serve as justification for the attempts at the profitable production of motion by some other method than the expenditure of the chemical difference between carbon and oxygenβmore particularly by the transformation into motion of electricity obtained by chemical means.β[1]
MAYER AND HELMHOLTZHere, then, was this obscure German physician, leading the humdrum life of a village practitioner, yet seeing such visions as no human being in the world had ever seen before.
The great principle he had discovered became the dominating thought of his life, and filled all his leisure hours. He applied it far and wide, amid all the phenomena of the inorganic and organic worlds. It taught him that both vegetables and animals are machines, bound by the same laws that hold sway over inorganic matter, transforming energy, but creating nothing.
Then his mind reached out into space and met a universe made up of questions. Each star that blinked down at him as he rode in answer to a night-call seemed an interrogation-point asking, How do I exist? Why have I not long since burned out if your theory of conservation be true? No one had hitherto even tried to answer that question; few had so much as realized that it demanded an answer. But the Heilbronn physician understood the question and found an answer.
His meteoric hypothesis, published in 1848, gave for the first time a tenable explanation of the persistent light and heat of our sun and the myriad other sunsβan explanation to which we shall recur in another connection.
All this time our isolated philosopher, his brain aflame with the glow of creative thought, was quite unaware that any one else in the world was working along the same lines. And the outside world was equally heedless of the work of the Heilbronn physician. There was no friend to inspire enthusiasm and give courage, no kindred spirit to react on this masterful but lonely mind. And this is the more remarkable because there are few other cases where a master-originator in science has come upon the scene except as the pupil or friend of some other master-originator. Of the men we have noticed in the present connection, Young was the friend and confrere of Davy; Davy, the protege of Rumford; Faraday, the pupil of Davy; Fresnel, the co-worker with Arago; Colding, the confrere of Oersted; Joule, the pupil of Dalton. But Mayer is an isolated phenomenonβone of the lone mountain-peak intellects of the century. That estimate may be exaggerated which has called him the Galileo of the nineteenth century, but surely no lukewarm praise can do him justice.
Yet for a long time his work attracted no attention whatever. In 1847, when another German physician, Hermann von Helmholtz, one of the most massive and towering intellects of any age, had been independently led to comprehension of the doctrine of the conservation of energy and published his treatise on the subject, he had hardly heard of his countryman Mayer. When he did hear of him, however, he hastened to renounce all claim to the doctrine of conservation, though the world at large gives him credit of independent even though subsequent discovery.
JOULEβS PAPER OF 1843
Meantime, in England, Joule was going on from one experimental demonstration to another, oblivious of his German competitors and almost as little noticed by his own countrymen. He read his first paper before the chemical section of the British Association for the Advancement of Science in 1843, and no one heeded it in the least. It is well worth our while, however, to consider it at length. It bears the title, βOn the Calorific Effects of Magneto-Electricity, and the Mechanical Value of Heat.β The full text, as published in the Report of the British Association, is as follows: βAlthough it has been long known that fine platinum wire can be ignited by magneto-electricity, it still remained a matter of doubt whether heat was evolved by the COILS in which the magneto-electricity was generated; and it seemed indeed not unreasonable to suppose that COLD was produced there in order to make up for the heat evolved by the other part of the circuit. The author therefore has endeavored to clear up this uncertainty by experiment. His apparatus consisted of a small compound electromagnet, immersed in water, revolving between the poles of a powerful stationary magnet. The magneto-electricity developed in the coils of the revolving electromagnet was measured by an accurate galvanometer; and the temperature of the water was taken before and after each experiment by a very delicate thermometer.
The influence of the temperature of the surrounding atmospheric air was guarded against by covering the revolving tube with flannel, etc., and by the adoption of a system of interpolation. By an extensive series of experiments with the above apparatus the author succeeded in proving that heat is evolved by the coils of the magneto-electrical machine, as well as by any other part of the circuit, in proportion to the resistance to conduction of the wire and the square of the current; the magneto having, under comparable circumstances, the same calorific power as the voltaic electricity.
βProfessor Jacobi, of St. Petersburg, bad shown that the motion of an electromagnetic machine generates magneto-electricity in opposition to the voltaic current of the battery. The author had observed the same phenomenon on arranging his apparatus as an electromagnetic machine; but had found that no additional heat was evolved on account of the conflict of forces in the coil of the electromagnet, and that the heat evolved by the coil remained, as before, proportional to the square of the current. Again, by turning the machine contrary to the direction of the attractive forces, so as to increase the intensity of the voltaic current by the assistance of the magneto-electricity, he found that
Comments (0)