American library books » Science » The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕

Read book online «The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕».   Author   -   Charles Darwin



1 ... 42 43 44 45 46 47 48 49 50 ... 99
Go to page:
expressing ourselves doubtfully in this and other such cases.

 

A plant, 20 inches in height, was secured to a stick close beneath the curved summit, which formed rather less than a rectangle with the stem below. The shoot pointed away from the observer; and a glass filament pointing towards the vertical glass on which the tracing was made, was fixed to the convex surface of the curved portion. Therefore the descending lines in the figure represent the straightening of the curved portion as it grew older. The tracing (Fig. 123, p. 274) was begun at 9 A.M. on July 10th; the filament at first moved but little in a zigzag line, but at 2

P.M. it began rising and continued to do so till 9 P.M.; and this proves that the terminal portion was being more bent downwards. After 9 P.M. on the 10th an opposite movement commenced, and the curved portion began to straighten itself, and this continued till 11.10 A.M. on the 12th, but was interrupted by some small oscillations and zigzags, showing movement in different directions. After 11.10 A.M. on the 12th this part of the stem, still considerably curved, circumnutated in a conspicuous manner until nearly 3 P.M. on the 13th; but during all this time a downward movement of the filament prevailed, caused by the continued straightening of the stem.

By the afternoon of the 13th, the summit, which had originally been deflected more than a right angle from the perpendicular, had grown so nearly straight that the tracing could no longer be continued on the vertical glass. There can therefore be no doubt that the straightening of the abruptly curved portion of the growing stem of this plant, which appears to be wholly due to hyponasty, is the result of modified circumnutation. We will only add that a filament was fixed in a different manner across the curved summit of another plant, and the same general kind of movement was observed.

 

Trifolium repens.—In many, but not in all the species of Trifolium, as the separate little flowers wither, the sub-peduncles bend downwards, so as to depend parallel to the upper part of the main peduncle. In Tr. subterraneum the main peduncle curves downwards for the sake of burying its capsules, and in this species the sub-peduncles of the separate flowers bend * ‘Ueber Orthotrope und Plagiotrope Pflanzentheile;’ ‘Arbeiten des Bot.

Inst., in W�rzburg,’ Heft ii. 1879, p. 226.

[page 277]

 

Fig. 124. Trifolium repens: circumnutating and epinastic movements of the sub-peduncle of a single flower, traced on a vertical glass under a skylight, in A from 11.30 A.M. Aug. 27th to 7 A.M. 30th; in B from 7 A.M.

Aug. 30th to a little after 6 P.M. Sept. 8th.

[page 278]

 

upwards, so as to occupy the same position relatively to the upper part of the main peduncle as in Tr. repens. This fact alone would render it probable that the movements of the sub-peduncles in Tr. repens were independent of geotropism. Nevertheless, to make sure, some flower-heads were tied to little sticks upside down and others in a horizontal position; their sub-peduncles, however, all quickly curved upwards through the action of heliotropism. We therefore protected some flower-heads, similarly secured to sticks, from the light, and although some of them rotted, many of their sub-peduncles turned very slowly from their reversed or from their horizontal positions, so as to stand in the normal manner parallel to the upper part of the main peduncle. These facts show that the movement is independent of geotropism or apheliotropism; it must there[fore] be attributed to epinasty, which however is checked, at least as long as the flowers are young, by heliotropism. Most of the above flowers were never fertilised owing to the exclusion of bees; they consequently withered very slowly, and the movements of the sub-peduncles were in like manner much retarded.

 

To ascertain the nature of the movement of the sub-peduncle, whilst bending downwards, a filament was fixed across the summit of the calyx of a not fully expanded and almost upright flower, nearly in the centre of the head.

The main peduncle was secured to a stick close beneath the head. In order to see the marks on the glass filament, a few flowers had to be cut away on the lower side of the head. The flower under observation at first diverged a little from its upright position, so as to occupy the open space caused by the removal of the adjoining flowers. This required two days, after which time a new tracing was begun (Fig. 124). In A we see the complex circumnutating course pursued from 11.30 A.M. Aug. 26th to 7 A.M. on the 30th. The pot was then moved a very little to the right, and the tracing (B) was continued without interruption from 7 A.M. Aug. 30th to after 6

P.M. Sept. 8th. It should be observed that on most of these days, only a single dot was made each morning at the same hour. Whenever the flower was observed carefully, as on Aug. 30th and Sept. 5th and 6th, it was found to be circumnutating over a small space. At last, on Sept. 7th, it began to bend downwards, and continued to do so until after 6 P.M. on the 8th, and indeed until the morning of the 9th, when its movements could no longer be traced on the vertical glass. It was carefully observed during the whole of the 8th, and by

[page 279]

10.30 P.M. it had descended to a point lower down by two-thirds of the length of the figure as here given; but from want of space the tracing has been copied in B, only to a little after 6 P.M. On the morning of the 9th the flower was withered, and the sub-peduncle now stood at an angle of 57o beneath the horizon. If the flower had been fertilised it would have withered much sooner, and have moved much more quickly. We thus see that the sub-peduncle oscillated up and down, or circumnutated, during its whole downward epinastic course.

 

The sub-peduncles of the fertilised and withered flowers of Oxalis carnosa likewise bend downwards through epinasty, as will be shown in a future chapter; and their downward course is strongly zigzag, indicating circumnutation.]

 

The number of instances in which various organs move through epinasty or hyponasty, often in combination with other forces, for the most diversified purposes, seems to be inexhaustibly great; and from the several cases which have been here given, we may safely infer that such movements are due to modified circumnutation.

[page 280]

 

CHAPTER VI.

 

MODIFIED CIRCUMNUTATION: SLEEP OR NYCTITROPIC MOVEMENTS, THEIR USE: SLEEP

OF COTYLEDONS.

 

Preliminary sketch of the sleep or nyctitropic movements of leaves—

Presence of pulvini—The lessening of radiation the final cause of nyctitropic movements—Manner of trying experiments on leaves of Oxalis, Arachis, Cassia, Melilotus, Lotus and Marsilea and on the cotyledons of Mimosa—Concluding remarks on radiation from leaves—Small differences in the conditions make a great difference in the result - Description of the nyctitropic position and movements of the cotyledons of various plants—

List of species—Concluding remarks—Independence of the nyctitropic movements of the leaves and cotyledons of the same species—Reasons for believing that the movements have been acquired for a special purpose.

 

The so-called sleep of leaves is so conspicuous a phenomenon that it was observed as early as the time of Pliny;* and since Linnaeus published his famous Essay, ‘Somnus Plantarum,’ it has been the subject of several memoirs. Many flowers close at night, and these are likewise said to sleep; but we are not here concerned with their movements, for although effected by the same mechanism as in the case of young leaves, namely, unequal growth on the opposite sides (as first proved by Pfeffer), yet they differ essentially in being excited chiefly by changes of temperature instead of light; and in being effected, as far as we can judge, for a different purpose. Hardly any one supposes that there is any real analogy * Pfeffer has given a clear and interesting sketch of the history of this subject in his ‘Die Periodischen Bewegungen der Blattorgane,’ 1875, P. 163.

[page 281]

 

between the sleep of animals and that of plants,* whether of leaves or flowers. It seems therefore, advisable to give a distinct name to the so-called sleep-movements of plants. These have also generally been confounded, under the term “periodic,” with the slight daily rise and fall of leaves, as described in the fourth chapter; and this makes it all the more desirable to give some distinct name to sleep-movements. Nyctitropism and nyctitropic, i.e. night-turning, may be applied both to leaves and flowers, and will be occasionally used by us; but it would be best to confine the term to leaves. The leaves of some few plants move either upwards or downwards when the sun shines intensely on them, and this movement has sometimes been called diurnal sleep; but we believe it to be of an essentially different nature from the nocturnal movement, and it will be briefly considered in a future chapter.

 

The sleep or nyctitropism of leaves is a large subject, and we think that the most convenient plan will be first to give a brief account of the position which leaves assume at night, and of the advantages apparently thus gained. Afterwards the more remarkable cases will be described in detail, with respect to cotyledons in the present chapter, and to leaves in the next chapter. Finally, it will be shown that these movements result from circumnutation, much modified and regulated by the alternations of day and night, or light and darkness; but that they are also to a certain extent inherited.

 

Leaves, when they go to sleep, move either upwards or downwards, or in the case of the leaflets of com-

 

* Ch. Royer must, however, be excepted; see ‘Annales des Sc. Nat.’ (5th series), Bot. vol. ix. 1868, p. 378.

 

[page 282]

pound leaves, forwards, that is, towards the apex of the leaf, or backwards, that is, towards its base; or, again, they may rotate on their own axes without moving either upwards or downwards. But in almost every case the plane of the blade is so placed as to stand nearly or quite vertically at night. Therefore the apex, or the base, or either lateral edge, may be directed towards the zenith. Moreover, the upper surface of each leaf, and more especially of each leaflet, is often brought into close contact with that of the opposite one; and this is sometimes effected by singularly complicated movements. This fact suggests that the upper surface requires more protection than the lower one. For instance, the terminal leaflet in Trifolium, after turning up at night so as to stand vertically, often continues to bend over until the upper surface is directed downwards whilst the lower surface is fully exposed to the sky; and an arched roof is thus formed over the two lateral leaflets, which have their upper surfaces pressed closely together. Here we have the unusual case of one of the leaflets not standing vertically, or almost vertically, at night.

 

Considering that leaves in assuming their nyctitropic positions often move through an angle of 90o; that the movement is rapid in the evening; that in some cases, as we shall see in the next chapter, it is extraordinarily complicated; that with certain seedlings, old enough to bear true leaves, the cotyledons move vertically upwards at night, whilst at the same time the leaflets move vertically downwards; and that in the same genus the leaves or cotyledons of some species move upwards, whilst those of other species move downwards;—from these and other such facts, it is hardly possible to doubt that plants must derive some [page 283]

great advantage from such remarkable powers of movement.

 

The nyctitropic movements of leaves and cotyledons are effected in

1 ... 42 43 44 45 46 47 48 49 50 ... 99
Go to page:

Free e-book: «The Power of Movement in Plants by Charles Darwin (best fiction books to read TXT) 📕»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment