Relativity - The Special and General Theory by Albert Einstein (early reader books txt) π
*** A refinement and modification of these views does not becomenecessary until we come to deal with the general theory of relativity,treated in the second part of this book.
SPACE AND TIME IN CLASSICAL MECHANICS
The purpose of mechanics is to describe how bodies change theirposition in space with "time." I should load my conscience with gravesins against the sacred spirit of lucidity were I to formulate theaims of mechanics in this way, without serious reflection and detailedexplanations. Let us proceed to disclose these sins.
It is not clear what is to be understood here by "position" and"space." I stand at the window of a railway carriage which istravelling uniformly, and drop a stone on the embankment, withoutthrowing it. Then, disregarding the influence of the air resistance, Isee the stone descend in a straight line. A pedestrian who observesthe misdeed from the footpath notices th
Read free book Β«Relativity - The Special and General Theory by Albert Einstein (early reader books txt) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Albert Einstein
- Performer: 0452287847
Read book online Β«Relativity - The Special and General Theory by Albert Einstein (early reader books txt) πΒ». Author - Albert Einstein
Figure 03: file fig03.gif
man walking along the carriage, or of the moving point in the present section. If we denote the velocity of the light relative to the tube by W, then this is given by the equation (A) or (B), according as the Galilei transformation or the Lorentz transformation corresponds to the facts. Experiment * decides in favour of equation (B) derived from the theory of relativity, and the agreement is, indeed, very exact. According to recent and most excellent measurements by Zeeman, the influence of the velocity of flow v on the propagation of light is represented by formula (B) to within one per cent.
Nevertheless we must now draw attention to the fact that a theory of this phenomenon was given by H. A. Lorentz long before the statement of the theory of relativity. This theory was of a purely electrodynamical nature, and was obtained by the use of particular hypotheses as to the electromagnetic structure of matter. This circumstance, however, does not in the least diminish the conclusiveness of the experiment as a crucial test in favour of the theory of relativity, for the electrodynamics of Maxwell-Lorentz, on which the original theory was based, in no way opposes the theory of relativity. Rather has the latter been developed trom electrodynamics as an astoundingly simple combination and generalisation of the hypotheses, formerly independent of each other, on which electrodynamics was built.
Notes
*) Fizeau found eq. 10 , where eq. 11
is the index of refraction of the liquid. On the other hand, owing to the smallness of eq. 12 as compared with I,
we can replace (B) in the first place by eq. 13 , or to the same order of approximation by
eq. 14 , which agrees with Fizeauβs result.
THE HEURISTIC VALUE OF THE THEORY OF RELATIVITY
Our train of thought in the foregoing pages can be epitomised in the following manner. Experience has led to the conviction that, on the one hand, the principle of relativity holds true and that on the other hand the velocity of transmission of light in vacuo has to be considered equal to a constant c. By uniting these two postulates we obtained the law of transformation for the rectangular coordinates x, y, z and the time t of the events which constitute the processes of nature. In this connection we did not obtain the Galilei transformation, but, differing from classical mechanics, the Lorentz transformation.
The law of transmission of light, the acceptance of which is justified by our actual knowledge, played an important part in this process of thought. Once in possession of the Lorentz transformation, however, we can combine this with the principle of relativity, and sum up the theory thus:
Every general law of nature must be so constituted that it is transformed into a law of exactly the same form when, instead of the space-time variables x, y, z, t of the original coordinate system K, we introduce new space-time variables x1, y1, z1, t1 of a coordinate system K1. In this connection the relation between the ordinary and the accented magnitudes is given by the Lorentz transformation. Or in brief : General laws of nature are co-variant with respect to Lorentz transformations.
This is a definite mathematical condition that the theory of relativity demands of a natural law, and in virtue of this, the theory becomes a valuable heuristic aid in the search for general laws of nature. If a general law of nature were to be found which did not satisfy this condition, then at least one of the two fundamental assumptions of the theory would have been disproved. Let us now examine what general results the latter theory has hitherto evinced.
GENERAL RESULTS OF THE THEORY
It is clear from our previous considerations that the (special) theory of relativity has grown out of electrodynamics and optics. In these fields it has not appreciably altered the predictions of theory, but it has considerably simplified the theoretical structure, i.e. the derivation of laws, and β what is incomparably more important β it has considerably reduced the number of independent hypothese forming the basis of theory. The special theory of relativity has rendered the Maxwell-Lorentz theory so plausible, that the latter would have been generally accepted by physicists even if experiment had decided less unequivocally in its favour.
Classical mechanics required to be modified before it could come into line with the demands of the special theory of relativity. For the main part, however, this modification affects only the laws for rapid motions, in which the velocities of matter v are not very small as compared with the velocity of light. We have experience of such rapid motions only in the case of electrons and ions; for other motions the variations from the laws of classical mechanics are too small to make themselves evident in practice. We shall not consider the motion of stars until we come to speak of the general theory of relativity. In accordance with the theory of relativity the kinetic energy of a material point of mass m is no longer given by the well-known expression
eq. 15: file eq15.gif
but by the expression
eq. 16: file eq16.gif
This expression approaches infinity as the velocity v approaches the velocity of light c. The velocity must therefore always remain less than c, however great may be the energies used to produce the acceleration. If we develop the expression for the kinetic energy in the form of a series, we obtain
eq. 17: file eq17.gif
When eq. 18 is small compared with unity, the third of these terms is always small in comparison with the second,
which last is alone considered in classical mechanics. The first term mc^2 does not contain the velocity, and requires no consideration if we are only dealing with the question as to how the energy of a point-mass; depends on the velocity. We shall speak of its essential significance later.
The most important result of a general character to which the special theory of relativity has led is concerned with the conception of mass. Before the advent of relativity, physics recognised two conservation laws of fundamental importance, namely, the law of the canservation of energy and the law of the conservation of mass these two fundamental laws appeared to be quite independent of each other. By means of the theory of relativity they have been united into one law. We shall now briefly consider how this unification came about, and what meaning is to be attached to it.
The principle of relativity requires that the law of the concervation of energy should hold not only with reference to a coordinate system K, but also with respect to every coordinate system K1 which is in a state of uniform motion of translation relative to K, or, briefly, relative to every β Galileian β system of coordinates. In contrast to classical mechanics; the Lorentz transformation is the deciding factor in the transition from one such system to another.
By means of comparatively simple considerations we are led to draw the following conclusion from these premises, in conjunction with the fundamental equations of the electrodynamics of Maxwell: A body moving with the velocity v, which absorbs * an amount of energy E[0] in the form of radiation without suffering an alteration in velocity in the process, has, as a consequence, its energy increased by an amount
eq. 19: file eq19.gif
In consideration of the expression given above for the kinetic energy of the body, the required energy of the body comes out to be
eq. 20: file eq20.gif
Thus the body has the same energy as a body of mass
eq.21: file eq21.gif
moving with the velocity v. Hence we can say: If a body takes up an amount of energy E[0], then its inertial mass increases by an amount
eq. 22: file eq22.gif
the inertial mass of a body is not a constant but varies according to the change in the energy of the body. The inertial mass of a system of bodies can even be regarded as a measure of its energy. The law of the conservation of the mass of a system becomes identical with the law of the conservation of energy, and is only valid provided that the system neither takes up nor sends out energy. Writing the expression for the energy in the form
eq. 23: file eq23.gif
we see that the term mc^2, which has hitherto attracted our attention, is nothing else than the energy possessed by the body ** before it absorbed the energy E[0].
A direct comparison of this relation with experiment is not possible at the present time (1920; see *** Note, p. 48), owing to the fact that the changes in energy E[0] to which we can Subject a system are not large enough to make themselves perceptible as a change in the inertial mass of the system.
eq. 22: file eq22.gif
is too small in comparison with the mass m, which was present before the alteration of the energy. It is owing to this circumstance that classical mechanics was able to establish successfully the conservation of mass as a law of independent validity.
Let me add a final remark of a fundamental nature. The success of the Faraday-Maxwell interpretation of electromagnetic action at a distance resulted in physicists becoming convinced that there are no such things as instantaneous actions at a distance (not involving an intermediary medium) of the type of Newtonβs law of gravitation. According to the theory of relativity, action at a distance with the velocity of light always takes the place of instantaneous action at a distance or of action at a distance with an infinite velocity of transmission. This is connected with the fact that the velocity c plays a fundamental role in this theory. In Part II we shall see in what way this result becomes modified in the general theory of relativity.
Notes
*) E[0] is the energy taken up, as judged from a coordinate system moving with the body.
**) As judged from a coordinate system moving with the body.
***[Note] The equation E = mc^2 has been thoroughly proved time and again since this time.
EXPERIENCE AND THE SPECIAL THEORY OF RELATIVITY
To what extent is the special theory of relativity supported by experience? This question is not easily answered for the reason already mentioned in connection with the fundamental experiment of Fizeau. The special theory of relativity has crystallised out from the Maxwell-Lorentz theory of electromagnetic phenomena. Thus all facts of experience which support the electromagnetic theory also support the theory of relativity. As being of particular importance, I mention here the fact that the theory of relativity enables us to predict the effects produced on the light reaching us from the fixed stars. These results are obtained in an exceedingly simple manner, and the effects indicated, which are due to the relative motion of the earth with reference to those fixed stars are found to be in accord with experience. We refer to the yearly movement of the apparent position of the fixed stars resulting from the motion of the earth round the sun (aberration), and to the influence of the radial components of the relative motions of the fixed stars with respect to the earth on the colour of the light reaching us from them. The latter effect manifests itself in a slight displacement of the spectral lines of the light transmitted to us from a fixed star, as compared with the position of the same spectral lines when they are produced by a terrestrial source of light (Doppler principle). The experimental arguments in favour of the Maxwell-Lorentz theory,
Comments (0)