Amusements in Mathematics by Henry Ernest Dudeney (best free ebook reader for pc .txt) đź“•
11.--THE CYCLISTS' FEAST.
'Twas last Bank Holiday, so I've been told,Some cyclists rode abroad in glorious weather.Resting at noon within a tavern old,They all agreed to have a feast together."Put it all in one bill, mine host," they said,"For every man an equal share will pay."The bill was promptly on the table laid,And four pounds was the reckoning that day.But, sad to state, when they prepared to square,'Twas found that two had sneaked outside and fled.So, for two shillings more than his due shareEach honest man who had remained was bled.They settled later with those rogues, no doubt.
Read free book «Amusements in Mathematics by Henry Ernest Dudeney (best free ebook reader for pc .txt) 📕» - read online or download for free at americanlibrarybooks.com
- Author: Henry Ernest Dudeney
- Performer: 0486204731
Read book online «Amusements in Mathematics by Henry Ernest Dudeney (best free ebook reader for pc .txt) 📕». Author - Henry Ernest Dudeney
of Moves. No. of
Counters. No. of
Moves. No. of
Counters. No. of
Moves. 4n n - 1 and n 2(n - 1)² + 5n - 7 2n + 1 2n² + 3n + 1 4(n² + n - 1) 4n - 2 n - 1 " n 2(n - 1)² + 5n - 7 2n - 1 2(n - 1)² + 3n - 2 4n² - 5 4n + 1 n " n + 1 2n² + 5n - 2 2n 2n² + 3n - 4 2(2n² + 4n - 3) 4n - 1 n - 1 " n 2(n - 1)² + 5n - 7 2n 2n² + 3n - 4 4n² + 4n - 9 SECOND METHOD.
of
Counters. L MOVEMENT. U MOVEMENT. Total No.
of Moves. No. of
Counters. No. of
Moves. No. of
Counters. No. of
Moves. 4n n and n 2n² + 3n - 4 2n 2(n - 1)² + 5n - 2 4(n² + n - 1) 4n - 2 n - 1 " n - 1 2(n - 1)² + 3n - 7 2n 2(n - 1)² + 5n - 2 4n² - 5 4n + 1 n " n 2n² + 3n - 4 2n + 1 2n² + 5n - 2 2(2n² + 4n - 3) 4n - 1 n " n 2n² + 3n - 4 2n - 1 2(n - 1)² + 5n - 7 4n² + 4n-9
More generally we may say that with m counters, where m is even and greater than 4, we require (m² + 4m - 16)/4 moves; and where m is odd and greater than 3, (m² + 6m - 31)/4 moves. I have thus shown the reader how to find the minimum number of moves for any case, and the character and direction of the moves. I will leave him to discover for himself how the actual order of moves is to be determined. This is a hard nut, and requires careful adjustment of the L and the U movements, so that they may be mutually accommodating.
216.—THE EDUCATED FROGS.—solution
The following leaps solve the puzzle in ten moves: 2 to 1, 5 to 2, 3 to 5, 6 to 3, 7 to 6, 4 to 7, 1 to 4, 3 to 1, 6 to 3, 7 to 6.
217.—THE TWICKENHAM PUZZLE.—solution
Play the counters in the following order: K C E K W T C E H M K W T A N C E H M I K C E H M T, and there you are, at Twickenham. The position itself will always determine whether you are to make a leap or a simple move.
218.—THE VICTORIA CROSS PUZZLE.—solution
In solving this puzzle there were two things to be achieved: first, so to manipulate the counters that the word VICTORIA should read round the cross in the same direction, only with the V on one of the dark arms; and secondly, to perform the feat in the fewest possible moves. Now, as a matter of fact, it would be impossible to perform the first part in any way whatever if all the letters of the word were different; but as there are two I's, it can be done by making these letters change places—that is, the first I changes from the 2nd place to the 7th, and the second I from the 7th place to the 2nd. But the point I referred to, when introducing the puzzle, as a little remarkable is this: that a solution in twenty-two moves is obtainable by moving the letters in the order of the following words: "A VICTOR! A VICTOR! A VICTOR I!"
There are, however, just six solutions in eighteen moves, and the following is one of them: I (1), V, A, I (2), R, O, T, I (1), I (2), A, V, I (2), I (1), C, I (2), V, A, I (1). The first and second I in the word are distinguished by the numbers 1 and 2.
It will be noticed that in the first solution given above one of the I's never moves, though the movements of the other letters cause it to change its relative position. There is another peculiarity I may point out—that there is a solution in twenty-eight moves requiring no letter to move to the central division except the I's. I may also mention that, in each of the solutions in eighteen moves, the letters C, T, O, R move once only, while the second I always moves four times, the V always being transferred to the right arm of the cross.
219.—THE LETTER BLOCK PUZZLE.—solution
This puzzle can be solved in 23 moves—the fewest possible. Move the blocks in the following order: A, B, F, E, C, A, B, F, E, C, A, B, D, H, G, A, B, D, H, G, D, E, F.
220.—A LODGING-HOUSE DIFFICULTY.—solution
The shortest possible way is to move the articles in the following order: Piano, bookcase, wardrobe, piano, cabinet, chest of drawers, piano, wardrobe, bookcase, cabinet, wardrobe, piano, chest of drawers, wardrobe, cabinet, bookcase, piano. Thus seventeen removals are necessary. The landlady could then move chest of drawers, wardrobe, and cabinet. Mr. Dobson did not mind the wardrobe and chest of drawers changing rooms so long as he secured the piano.
221.—THE EIGHT ENGINES.—solution
The solution to the Eight Engines Puzzle is as follows: The engine that has had its fire drawn and therefore cannot move is No. 5. Move the other engines in the following order: 7, 6, 3, 7, 6, 1, 2, 4, 1, 3, 8, 1, 3, 2, 4, 3, 2, seventeen moves in all, leaving the eight engines in the required order.
There are two other slightly different solutions.
222.—A RAILWAY PUZZLE.—solution
This little puzzle may be solved in as few as nine moves. Play the engines as follows: From 9 to 10, from 6 to 9, from 5 to 6, from 2 to 5, from 1 to 2, from 7 to 1, from 8 to 7, from 9 to 8, and from 10 to 9. You will then have engines A, B, and C on each of the three circles and on each of the three straight lines. This is the shortest solution that is possible.
223.—A RAILWAY MUDDLE.—solution
Only six reversals are necessary. The white train (from A to D) is divided into three sections, engine and 7 wagons, 8 wagons, and 1 wagon. The black train (D to A) never uncouples anything throughout. Fig. 1 is original position with 8 and 1 uncoupled. The black train proceeds to position in Fig. 2 (no reversal). The engine and 7 proceed towards D, and black train backs, leaves 8 on loop, and takes up position in Fig. 3 (first reversal). Black train goes to position in Fig. 4 to fetch single wagon (second reversal). Black train pushes 8 off loop and leaves single wagon there, proceeding on its journey, as in Fig. 5 (third and fourth reversals). White train now backs on to loop to pick up single car and goes right away to D (fifth and sixth reversals).
224.—THE MOTOR-GARAGE PUZZLE.—solution
The exchange of cars can be made in forty-three moves, as follows: 6-G, 2-B, 1-E, 3-H, 4-I, 3-L, 6-K, 4-G, 1-I, 2-J, 5-H, 4-A, 7-F, 8-E, 4-D, 8-C, 7-A, 8-G, 5-C, 2-B, 1-E, 8-I, 1-G, 2-J, 7-H, 1-A, 7-G, 2-B, 6-E, 3-H, 8-L, 3-I, 7-K, 3-G, 6-I, 2-J, 5-H, 3-C, 5-G, 2-B, 6-E, 5-I, 6-J. Of course, "6-G" means that the car numbered "6" moves to the point "G." There are other ways in forty-three moves.
225.—THE TEN PRISONERS.—solution
It will be seen in the illustration how the prisoners may be arranged so as to produce as many as sixteen even rows. There are 4 such vertical rows, 4 horizontal rows, 5 diagonal rows in one direction, and 3 diagonal rows in the other direction. The arrows here show the movements of the four prisoners, and it will be seen that the infirm man in the bottom corner has not been moved.
226.—ROUND THE COAST.—solution
In order to place words round the circle under the conditions, it is necessary to select words in which letters are repeated in certain relative positions. Thus, the word that solves our puzzle is "Swansea," in which the first and fifth letters are the same, and the third and seventh the same. We make out jumps as follows, taking the letters of the word in their proper order: 2-5, 7-2, 4-7, 1-4, 6-1, 3-6, 8-3. Or we could place a word like "Tarapur" (in which the second and fourth letters, and the third and seventh, are alike) with these moves: 6-1, 7-4, 2-7, 5-2, 8-5, 3-6, 8-3. But "Swansea" is the only word, apparently, that will fulfil the conditions of the puzzle.
This puzzle should be compared with Sharp's Puzzle, referred to in my solution to No. 341, "The Four Frogs." The condition "touch and jump over two" is identical with "touch and move along a line."
227.—CENTRAL SOLITAIRE.—solution
Here is a solution in nineteen moves; the moves enclosed in brackets count as one move only: 19-17, 16-18, (29-17, 17-19), 30-18, 27-25, (22-24, 24-26), 31-23, (4-16, 16-28), 7-9, 10-8, 12-10, 3-11, 18-6, (1-3, 3-11), (13-27, 27-25), (21-7, 7-9), (33-31, 31-23), (10-8, 8-22, 22-24, 24-26, 26-12, 12-10), 5-17. All the counters are now removed except one, which is left in the central hole. The solution needs judgment, as one is tempted to make several jumps in one move, where it would be the reverse of good play. For example, after playing the first 3-11 above, one is inclined to increase the length of the move by continuing with 11-25, 25-27, or with 11-9, 9-7.
I do not think the number of moves can be reduced.
228.—THE TEN APPLES.—solution
Number the plates (1, 2, 3, 4), (5, 6, 7, 8), (9, 10, 11, 12), (13, 14, 15, 16) in successive rows from the top to the bottom. Then transfer the apple from 8 to 10 and play as follows, always removing the apple jumped over: 9-11, 1-9, 13-5, 16-8, 4-12, 12-10, 3-1, 1-9, 9-11.
229.—THE NINE ALMONDS.—solution
This puzzle may be solved in as few as four moves, in the following manner: Move 5 over 8, 9, 3, 1. Move 7 over 4. Move 6 over 2 and 7. Move 5 over 6, and all the counters are removed except 5, which is left in the central square that it originally occupied.
230.—THE TWELVE PENNIES.—solution
Here is one of several solutions. Move 12 to 3, 7 to 4, 10 to 6, 8 to 1, 9 to 5, 11 to 2.
231.—PLATES AND COINS.—solution
Number the plates from 1 to 12 in the order that the boy is seen to be going in the illustration. Starting from 1, proceed as follows, where "1 to 4" means that you take the coin from plate No. 1 and transfer it to plate No. 4: 1 to 4, 5 to 8, 9 to 12, 3 to 6, 7 to 10, 11 to 2, and complete the last revolution to 1, making three revolutions in all. Or you can proceed this way: 4 to 7, 8 to 11, 12 to 3, 2 to 5, 6 to 9, 10 to 1. It is easy to solve in four revolutions, but the solutions in three are more difficult to discover.
This is "The Riddle of the Fishpond" (No. 41, Canterbury Puzzles) in a different dress.
232.—CATCHING THE MICE.—solution
In order that the cat should eat every thirteenth mouse, and the white mouse last of all, it is necessary that the count should begin at the seventh mouse (calling the white one the first)—that is, at the one nearest the tip of the cat's tail. In this case it is not at all necessary to try starting at all the mice in turn until you come to the right one, for you can just start anywhere and note how far distant the last one eaten is from the starting point. You will find it to be the eighth, and therefore must start at the eighth, counting backwards from the white mouse. This is the one I have indicated.
In the case of the second puzzle, where you have to find the smallest number with which the cat may start at the white mouse
Comments (0)