American library books Β» Science Β» The Advance of Science in the Last Half-Century by Thomas Henry Huxley (best way to read books TXT) πŸ“•

Read book online Β«The Advance of Science in the Last Half-Century by Thomas Henry Huxley (best way to read books TXT) πŸ“•Β».   Author   -   Thomas Henry Huxley



1 ... 4 5 6 7 8 9 10 11 12 13
Go to page:
inquirers, to the great profit of science.

Darwin found the biological world a more than sufficient field for even his great powers, and left the cosmical part of the doctrine to others. Not much has been added to the nebular hypothesis, since the time of Laplace, except that the attempt to show (against that hypothesis) that all nebulæ are star clusters, has been met by the spectroscopic proof of the gaseous condition of some of them. Moreover, physicists of the present generation appear now to accept the secular cooling of the earth, which is one of the corollaries of that hypothesis. In fact, attempts have been made, by the help of deductions from the data of physics, to lay down an approximate limit to the number of millions of years which have elapsed since the earth was habitable by living beings. If the conclusions thus reached should stand the test of further investigation, they will undoubtedly be very valuable. But, whether true or false, they can have no influence upon the doctrine of evolution in its application to living organisms. The occurrence of successive forms of life upon our globe is an historical fact, which cannot be disputed; and the relation of these successive forms, as stages of evolution of the same type, is established in various cases. The biologist has no means of determining the time over which the process of evolution has extended, but accepts the computation of the physical geologist and the physicist, whatever that may be.

and philosophy

Evolution as a philosophical doctrine applicable to all phenomena, whether physical or mental, whether manifested by material atoms or by men in society, has been dealt with systematically in the 'Synthetic Philosophy' of Mr. Herbert Spencer. Comment on that great undertaking would not be in place here. I mention it because, so far as I know, it is the first attempt to deal, on scientific principles, with modern scientific facts and speculations. For the 'Philosophic positive' of M. Comte, with which Mr. Spencer's system of philosophy is sometimes compared, though it professes a similar object, is unfortunately permeated by a thoroughly unscientific spirit, and its author had no adequate acquaintance with the physical sciences even of his own time.

The doctrine of evolution, so far as the present physical cosmos is concerned, postulates the fixity of the rules of operation of the causes of motion in the material universe. If all kinds of matter are modifications of one kind, and if all modes of motion are derived from the same energy, the orderly evolution of physical nature out of one substratum and one energy implies that the rules of action of that energy should be fixed and definite. In the past history of the universe, back to that point, there can be no room for chance or disorder. But it is possible to raise the question whether this universe of simplest matter and definitely operating energy, which forms our hypothetical starting point, may not itself be a product of evolution from a universe of such matter, in which the manifestations of energy were not definiteβ€”in which, for example, our laws of motion held good for some units and not for others, or for the same units at one time and not at anotherβ€”and which would therefore be a real epicurean chance-world?

For myself, I must confess that I find the air of this region of speculation too rarefied for my constitution, and I am disposed to take refuge in 'ignoramus et ignorabimus.'

Other achievements in physical science.

The execution of my further task, the indication of the most important achievements in the several branches of physical science during the last fifty years, is embarrassed by the abundance of the objects of choice; and by the difficulty which everyone, but a specialist in each department, must find in drawing a due distinction between discoveries which strike the imagination by their novelty, or by their practical influence, and those unobtrusive but pregnant observations and experiments in which the germs of the great things of the future really lie. Moreover, my limits restrict me to little more than a bare chronicle of the events which I have to notice.

Physics and chemistry.

In physics and chemistry, the old boundaries of which sciences are rapidly becoming effaced, one can hardly go wrong in ascribing a primary value to the investigations into the relation between the solid, liquid, and gaseous states of matter on the one hand, and degrees of pressure and of heat on the other. Almost all, even the most refractory, solids have been vaporised by the intense heat of the electric arc; and the most refractory gases have been forced to assume the liquid, and even the solid, forms by the combination of high pressure with intense cold. It has further been shown that there is no discontinuity between these statesβ€”that a gas passes into the liquid state through a condition which is neither one nor the other, and that a liquid body becomes solid, or a solid liquid, by the intermediation of a condition in which it is neither truly solid nor truly liquid.

Theoretical and experimental investigations have concurred in the establishment of the view that a gas is a body, the particles of which are in incessant rectilinear motion at high velocities, colliding with one another and bounding back when they strike the walls of the containing vessel; and, on this theory, the already ascertained relations of gaseous bodies to heat and pressure have been shown to be deducible from mechanical principles. Immense improvements have been effected, in the means of exhausting a given space of its gaseous contents; and experimentation on the phenomena which attend the electric discharge and the action of radiant heat, within the extremely rarefied media thus produced, has yielded a great number of remarkable results, some of which have been made familiar to the public by the Gieseler tubes and the radiometer. Already, these investigations have afforded an unexpected insight into the constitution of matter and its relations with thermal and electric energy, and they open up a vast field for future inquiry into some of the deepest problems of physics. Other important steps, in the same direction, have been effected by investigations into the absorption of radiant heat proceeding from different sources by solid, fluid, and gaseous bodies. And it is a curious example of the interconnection of the various branches of physical science, that some of the results thus obtained have proved of great importance in meteorology.

The spectroscope.

The existence of numerous dark lines, constant in their number and position in the various regions of the solar spectrum, was made out by Fraunhofer in the early part of the present century, but more than forty years elapsed before their causes were ascertained and their importance recognised. Spectroscopy, which then took its rise, is probably that employment of physical knowledge, already won, as a means of further acquisition, which most impresses the imagination. For it has suddenly and immensely enlarged our power of overcoming the obstacles which almost infinite minuteness on the one hand, and almost infinite distance on the other, have hitherto opposed to the recognition of the presence and the condition of matter. One eighteen-millionth of a grain of sodium in the flame of a spirit-lamp may be detected by this instrument; and, at the same time, it gives trust-worthy indications of the material constitution not only of the sun, but of the farthest of those fixed stars and nebulæ which afford sufficient light to affect the eye, or the photographic plate, of the inquirer.

Electricity.

The mathematical and experimental elucidation of the phenomena of electricity, and the study of the relations of this form of energy with chemical and thermal action, had made extensive progress before 1837. But the determination of the influence of magnetism on light, the discovery of diamagnetism, of the influence of crystalline structure on magnetism, and the completion of the mathematical theory of electricity, all belong to the present epoch. To it also appertain the practical execution and the working out of the results of the great international system of observations on terrestrial magnetism, suggested by Humboldt in 1836; and the invention of instruments of infinite delicacy and precision for the quantitative determination of electrical phenomena. The voltaic battery has received vast improvements; while the invention of magneto-electric engines and of improved means of producing ordinary electricity has provided sources of electrical energy vastly superior to any before extant in power, and far more convenient for use.

It is perhaps this branch of physical science which may claim the palm for its practical fruits, no less than for the aid which it has furnished to the investigation of other parts of the field of physical science. The idea of the practicability of establishing a communication between distant points, by means of electricity, could hardly fail to have simmered in the minds of ingenious men since, well nigh a century ago, experimental proof was given that electric disturbances could be propagated through a wire twelve thousand feet long. Various methods of carrying the suggestion into practice had been carried out with some degree of success; but the system of electric telegraphy, which, at the present time, brings all parts of the civilised world within a few minutes of one another, originated only about the commencement of the epoch under consideration. In its influence on the course of human affairs, this invention takes its place beside that of gunpowder, which tended to abolish the physical inequalities of fighting men; of printing, which tended to destroy the effect of inequalities in wealth among learning men; of steam transport, which has done the like for travelling men. All these gifts of science are aids in the process of levelling up; of removing the ignorant and baneful prejudices of nation against nation, province against province, and class against class; of assuring that social order which is the foundation of progress, which has redeemed Europe from barbarism, and against which one is glad to think that those who, in our time, are employing themselves in fanning the embers of ancient wrong, in setting class against class, and in trying to tear asunder the existing bonds of unity, are undertaking a futile struggle. The telephone is only second in practical importance to the electric telegraph. Invented, as it were, only the other day, it has already taken its place as an appliance of daily life. Sixty years ago, the extraction of metals from their solutions, by the electric current, was simply a highly interesting scientific fact. At the present day, the galvano-plastic art is a great industry; and, in combination with photography, promises to be of endless service in the arts. Electric lighting is another great gift of science to civilisation, the practical effects of which have not yet been fully developed, largely on account of its cost. But those whose memories go back to the tinder-box period, and recollect the cost of the first lucifer matches, will not despair of the results of the application of science and ingenuity to the cheap production of anything for which there is a large demand.

The influence of the progress of electrical knowledge and invention upon that of investigation in other fields of science is highly remarkable. The combination of electrical with mechanical contrivances has produced instruments by which, not only may extremely small intervals of time be exactly measured, but the varying rapidity of movements, which take place in such intervals and appear to the ordinary sense instantaneous, is recorded. The duration of the winking of an eye is a proverbial expression for an instantaneous action; but, by the help of the revolving cylinder and the electrical marking-apparatus, it is possible to obtain a graphic record of such an action, in which, if it endures a second, that second shall be subdivided into a hundred, or a thousand, equal parts, and the state of the action at each hundredth, or thousandth, of a second exhibited. In fact, these instruments may be

1 ... 4 5 6 7 8 9 10 11 12 13
Go to page:

Free e-book: Β«The Advance of Science in the Last Half-Century by Thomas Henry Huxley (best way to read books TXT) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment