The Game of Logic by Lewis Carroll (funny books to read .txt) 📕
that is, with a red counter in No. 5. What would this tell us,with regard to the class of "new Cakes"?
Would it not tell us that there are SOME
Read free book «The Game of Logic by Lewis Carroll (funny books to read .txt) 📕» - read online or download for free at americanlibrarybooks.com
- Author: Lewis Carroll
- Performer: -
Read book online «The Game of Logic by Lewis Carroll (funny books to read .txt) 📕». Author - Lewis Carroll
The Project Gutenberg EBook of The Game of Logic, by Lewis Carroll (#6 in our series by Lewis Carroll)
Copyright laws are changing all over the world. Be sure to check the copyright laws for your country before downloading or redistributing this or any other Project Gutenberg eBook.
This header should be the first thing seen when viewing this Project Gutenberg file. Please do not remove it. Do not change or edit the header without written permission.
Please read the “legal small print,” and other information about the eBook and Project Gutenberg at the bottom of this file. Included is important information about your specific rights and restrictions in how the file may be used. You can also find out about how to make a donation to Project Gutenberg, and how to get involved.
**Welcome To The World of Free Plain Vanilla Electronic Texts**
**eBooks Readable By Both Humans and By Computers, Since 1971**
*****These eBooks Were Prepared By Thousands of Volunteers!*****
Title: The Game of Logic
Author: Lewis Carroll
Release Date: December, 2003 [EBook #4763] [Yes, we are more than one year ahead of schedule] [This file was first posted on March 13, 2002]
Edition: 10
Language: English
Character set encoding: ASCII
*** START OF THE PROJECT GUTENBERG EBOOK, THE GAME OF LOGIC ***
Scanned by Gregory D. Weeks Transcribed by L. Lynn Smith Proofed by Reina Hosier and Brett Fishburne
THE GAME OF LOGICBy Lewis Carroll
–––––––
|9 | 10| | | | | –—x–– | | |11 | 12| | | | | | | |–y–—m––y’–| | | | | | | |13 | 14| | | –—x’–— | | | | |15 | 16|
–––––––
COLOURS FOR ––––-
COUNTERS |5 | 6|
___ | x |
| | | See the Sun is overhead, |—y––-y’-| Shining on us, FULL and | | |
RED! | x’ |
|7 | 8| Now the Sun is gone away, ––––- And the EMPTY sky is
GREY!
___
THE GAME OF LOGICBy Lewis Carrol
To my Child-friend.
I charm in vain; for never again, All keenly as my glance I bend,
Will Memory, goddess coy,
Embody for my joy Departed days, nor let me gaze
On thee, my fairy friend!
Yet could thy face, in mystic grace, A moment smile on me, ‘twould send
Far-darting rays of light
From Heaven athwart the night, By which to read in very deed
Thy spirit, sweetest friend!
So may the stream of Life’s long dream Flow gently onward to its end,
With many a floweret gay,
Adown its willowy way: May no sigh vex, no care perplex,
My loving little friend!
NOTA BENE.
With each copy of this Book is given an Envelope, containing a Diagram (similar to the frontispiece) on card, and nine Counters, four red and five grey.
The Envelope, &c. can be had separately, at 3d. each.
The Author will be very grateful for suggestions, especially from beginners in Logic, of any alterations, or further explanations, that may seem desirable. Letters should be addressed to him at “29, Bedford Street, Covent Garden, London.”
PREFACE“There foam’d rebellious Logic, gagg’d and bound.”
This Game requires nine Counters—four of one colour and five of another: say four red and five grey.
Besides the nine Counters, it also requires one Player, AT LEAST. I am not aware of any Game that can be played with LESS than this number: while there are several that require MORE: take Cricket, for instance, which requires twenty-two. How much easier it is, when you want to play a Game, to find ONE Player than twenty-two. At the same time, though one Player is enough, a good deal more amusement may be got by two working at it together, and correcting each other’s mistakes.
A second advantage, possessed by this Game, is that, besides being an endless source of amusement (the number of arguments, that may be worked by it, being infinite), it will give the Players a little instruction as well. But is there any great harm in THAT, so long as you get plenty of amusement?
CONTENTS.
I. NEW LAMPS FOR OLD.
1. Propositions … … . 1
2. Syllogisms … … . . 20
3. Fallacies … … . . 32
II. CROSS QUESTIONS.
1. Elementary … … . . 37
2. Half of Smaller Diagram. Propositions
to be represented … . . 40
3. Do. Symbols to be interpreted. . 42
4. Smaller Diagram. Propositions to be
represented … … . 44
5. Do. Symbols to be interpreted. . 46
6. Larger Diagram. Propositions to be
represented … … . 48
7. Both Diagrams to be employed . . 51
III. CROOKED ANSWERS.
1. Elementary … … . . 55
2. Half of Smaller Diagram. Propositions
represented … … . 59
3. Do. Symbols interpreted … 61
4. Smaller Diagram. Propositions represented. 62
5. Do. Symbols interpreted … 65
6. Larger Diagram. Propositions represented. 67
7. Both Diagrams employed … . 72
IV. HIT OR MISS … … … 85
CHAPTER I.
NEW LAMPS FOR OLD.
“Light come, light go.”
_________
1. Propositions.
“Some new Cakes are nice.”
“No new Cakes are nice.”
“All new cakes are nice.”
There are three ‘PROPOSITIONS’ for you—the only three kinds we are going to use in this Game: and the first thing to be done is to learn how to express them on the Board.
Let us begin with
“Some new Cakes are nice.”
But before doing so, a remark has to be made—one that is rather important, and by no means easy to understand all in a moment: so please to read this VERY carefully.
The world contains many THINGS (such as “Buns”, “Babies”, “Beetles”. “Battledores”. &c.); and these Things possess many ATTRIBUTES (such as “baked”, “beautiful”, “black”, “broken”, &c.: in fact, whatever can be “attributed to”, that is “said to belong to”, any Thing, is an Attribute). Whenever we wish to mention a Thing, we use a SUBSTANTIVE: when we wish to mention an Attribute, we use an ADJECTIVE. People have asked the question “Can a Thing exist without any Attributes belonging to it?” It is a very puzzling question, and I’m not going to try to answer it: let us turn up our noses, and treat it with contemptuous silence, as if it really wasn’t worth noticing. But, if they put it the other way, and ask “Can an Attribute exist without any Thing for it to belong to?”, we may say at once “No: no more than a Baby could go a railway-journey with no one to take care of it!” You never saw “beautiful” floating about in the air, or littered about on the floor, without any Thing to BE beautiful, now did you?
And now what am I driving at, in all this long rigmarole? It is this. You may put “is” or “are” between names of two THINGS (for example, “some Pigs are fat Animals”), or between the names of two ATTRIBUTES (for example, “pink is light-red”), and in each case it will make good sense. But, if you put “is” or “are” between the name of a THING and the name of an ATTRIBUTE (for example, “some Pigs are pink”), you do NOT make good sense (for how can a Thing BE an Attribute?) unless you have an understanding with the person to whom you are speaking. And the simplest understanding would, I think, be this—that the Substantive shall be supposed to be repeated at the end of the sentence, so that the sentence, if written out in full, would be “some Pigs are pink (Pigs)”. And now the word “are” makes quite good sense.
Thus, in order to make good sense of the Proposition “some new Cakes are nice”, we must suppose it to be written out in full, in the form “some new Cakes are nice (Cakes)”. Now this contains two ‘TERMS’—“new Cakes” being one of them, and “nice (Cakes)” the other. “New Cakes,” being the one we are talking about, is called the ‘SUBJECT’ of the Proposition, and “nice (Cakes)” the ‘PREDICATE’. Also this Proposition is said to be a ‘PARTICULAR’ one, since it does not speak of the WHOLE of its Subject, but only of a PART of it. The other two kinds are said to be ‘UNIVERSAL’, because they speak of the WHOLE of their Subjects—the one denying niceness, and the other asserting it, of the WHOLE class of “new Cakes”. Lastly, if you would like to have a definition of the word ‘PROPOSITION’ itself, you may take this:—“a sentence stating that some, or none, or all, of the Things belonging to a certain class, called its ‘Subject’, are also Things belonging to a certain other class, called its ‘Predicate’”.
You will find these seven words—PROPOSITION, ATTRIBUTE, TERM, SUBJECT, PREDICATE, PARTICULAR, UNIVERSAL—charmingly useful, if any friend should happen to ask if you have ever studied Logic. Mind you bring all seven words into your answer, and you friend will go away deeply impressed—‘a sadder and a wiser man’.
Now please to look at the smaller Diagram on the Board, and suppose it to be a cupboard, intended for all the Cakes in the world (it would have to be a good large one, of course). And let us suppose all the new ones to be put into the upper half (marked ‘x’), and all the rest (that is, the NOT-new ones) into the lower half (marked ‘x”). Thus the lower half would contain ELDERLY Cakes, AGED Cakes, ANTE-DILUVIAN Cakes—if there are any: I haven’t seen many, myself—and so on. Let us also suppose all the nice Cakes to be put into the left-hand half (marked ‘y’), and all the rest (that is, the not-nice ones) into the right-hand half (marked ‘y”). At present, then, we must understand x to mean “new”, x’ “not-new”, y “nice”, and y’ “not-nice.”
And now what kind of Cakes would you expect to find in compartment No. 5?
It is part of the upper half, you see; so that, if it has any Cakes in it, they must be NEW: and it is part of the left-hand half; so that they must be NICE. Hence if there are any Cakes in this compartment, they must have the double ‘ATTRIBUTE’ “new and nice”: or, if we use letters, the must be “x y.”
Observe that the letters x, y are written on two of the edges of this compartment. This you will find a very convenient rule for knowing what Attributes belong to the Things in any compartment. Take No. 7, for instance. If there are any Cakes there, they must be “x’ y”, that is, they must be “not-new and nice.”
Now let us make another agreement—that a red counter in a compartment shall mean that it is ‘OCCUPIED’, that is, that there are SOME Cakes in it. (The word ‘some,’ in Logic, means ‘one or more’ so that a single Cake in a compartment would be quite enough reason for saying “there are SOME Cakes here”). Also let us agree that a grey counter in a compartment shall mean that it is ‘EMPTY’, that is that there are NO Cakes in it. In the following Diagrams, I shall put ‘1’ (meaning ‘one or more’) where you are to put a RED counter, and ‘0’ (meaning ‘none’) where you are to put a GREY one.
As the Subject of our Proposition
Comments (0)