American library books » Fiction » The Ocean and Its Wonders by R. M. Ballantyne (ebook reader with built in dictionary txt) 📕

Read book online «The Ocean and Its Wonders by R. M. Ballantyne (ebook reader with built in dictionary txt) 📕».   Author   -   R. M. Ballantyne



1 2 3 4 5 6 7 8 9 10 ... 22
Go to page:
along with the Gulf Stream, with all its natural warmth of character, to ameliorate the climate of Great Britain and the western shores of Europe. Having accomplished this benevolent work, it passes on, with some of its heat and vigour still remaining, to the arctic seas—where it is finally robbed of all its heat and nearly all its salt, and frozen into an icicle—there for many a long day to exert a chilling influence on the waters and the atmosphere around it. Being melted at last by the hot sun of the short arctic summer, it hurries back with the cold currents of the north to the genial regions of the equator, in search of its lost caloric and salt, taking in a full cargo of lime, etcetera, as it passes the mouths of rivers. Arrived at its old starting-point, our wanderer receives once more heat and salt to the full, parts with its lime, and at once hastens off on a new voyage of usefulness—to give out of its superabundance in exchange for the superabundance of others: thus quietly teaching man the lesson that the true principles of commerce were carried out in the depths of the sea ages before he discovered them and carried them into practice on its surface.

Perchance another fate awaits this adventurous particle of water. Mayhap, before it reaches the cold regions of the north, it is evaporated into the clouds, and descends upon the earth in fresh and refreshing rain or dew. Having fertilised the fields, it flows back to its parent ocean, laden with a superabundant cargo of earthy substances, which it soon parts with in exchange for salt. And thus on it goes, round and round the world; down in the ocean’s depths, up in the cloudy sky, deep in the springs of earth; ever moving, ever active, never lost, and always fulfilling the end for which it was created.

All ocean currents are composed of water in one or other of the conditions just described;—the hot and salt waters of the equator, flowing north to be cooled and freshened; the cold and fresh waters of the north, flowing south to be heated and salted. The Gulf Stream is simply the stream of equatorial hot water that flows towards the pole through the Atlantic. Its fountain-head is the region of the equator, not the Gulf of Mexico; but it is carried, by the conformation of the land, into that gulf and deflected by it, and from it out into the ocean in the direction of Europe. This stream in the Atlantic is well defined, owing to the comparative narrowness of that sea.

The Gulf Stream, then, is like a river of oil in the ocean,—it preserves its distinctive character for more than three thousand miles. It flows towards the polar regions, and the waters of those regions flow in counter-currents towards the equator, because of the fixed law that water must seek its equilibrium as well as its level, thus keeping up a continuous circulation of the hot waters towards the north and the cold towards the south. There are similar currents in the Pacific, but they are neither so large nor so regular as those of the Atlantic, owing to the wide formation of the basin of the former sea.

The effect of the Gulf Stream on climate is very great. The dreary fur-trading establishment of York Factory, on the shores of Hudson’s Bay, is surrounded by a climate of the most rigorous character—the thermometer seldom rising up so high as zero during many months, and often ranging down so low as 50 degrees below zero, sometimes even lower, while the winter is seven or eight months long: the lakes and rivers are covered with ice upwards of six feet thick, and the salt sea itself is frozen. Yet this region lies in the same latitude with Scotland, York Factory being on the parallel of 57 degrees north, which passes close to Aberdeen! The difference in temperature between the two places is owing very much, if not entirely, to the influence of the Gulf Stream.

Starting from its caldron in the Gulf of Mexico, it carries a freight of caloric towards the North Atlantic. Owing partly to the diurnal motion of the Earth on its axis, its flow trends towards the east; hence its warm waters embrace our favoured coasts, and ameliorate our climate, while the eastern sea-board of North America is left, in winter, to the rigour of unmitigated frost.

But besides the powerful influence of this current on climate, it exerts a very considerable influence on navigation. In former times, when men regarded the ocean as a great watery waste—utterly ignorant of the exquisite order and harmonious action of all the varied substances and conditions which prevail in the sea, just as much as on the land—they committed themselves to the deep as to a blind chance, and took the storms and calms they encountered as their inevitable fate, which they had no means of evading. Ascertaining, as well as they could from the imperfect charts of those days, the position of their desired haven, they steered straight for it through fair weather and foul, regarding interruptions and delays as mere unavoidable matters of course.

But when men began to study the causes and effects of the operation of those elements in the midst of which they dwelt, they soon perceived that order reigned where before they had imagined that confusion revelled; and that, by adapting their operations to the ascertained laws of Providence, they could, even upon the seemingly unstable sea, avoid dangers and delays of many kinds, and oftentimes place themselves in highly favourable circumstances. Navigators no longer dash recklessly into the Gulf Stream, and try to stem its tide, as they did of yore; but, as circumstances require, they either take advantage of the counter-currents which skirt along it, or avail themselves of the warm climate which it creates even in the midst of winter. There is a certain spot in the Atlantic known by the name of the Sargasso Sea, which is neither more nor less than a huge ocean-eddy, in which immense quantities of sea-weed collect. The weed floats so thickly on the surface as to give to the sea the appearance of solid land; and ships find extreme difficulty in getting through this region, which is rendered still further unnavigable by the prevalence of long-continued calms. This Sargasso Sea is of considerable extent, and lies off the west coast of Africa, a little to the north of the Cape Verd Islands.

In former years, ships used to get entangled in this weedy region for weeks together, unable to proceed on their voyage. The great Columbus fell in with it on his voyage to America, and his followers, thinking they had reached the end of the world, were filled with consternation. This Sargasso Sea lies in the same spot at the present day, but men now know its extent and position. Instead of steering straight for port, they proceed a considerable distance out of their way, and, by avoiding this calm region, accomplish their voyages with much greater speed.

The ocean currents have been, by repeated and long-continued investigation, ascertained and mapped out; so also have the currents of the atmosphere, so that, now-a-days, by taking advantage of some of these currents and avoiding others, voyages are performed, not only in much shorter time, but with much greater precision and certainty. As it was with ocean currents long ago, so was it with atmospheric. Navigators merely put to sea, steered as near as possible on their direct course, and took advantage of such winds as chanced to blow. Now they know whither to steer in order to meet with such winds and currents as will convey them in the shortest space of time to the end of their voyage. The knowledge necessary to this has not been gained by the gigantic effort of one mind, nor by the accidental collocation of the results of the investigations of many ordinary minds. But a few master-minds have succeeded in gathering within their own grasp the myriad facts collected by thousands of naval men, of all countries, in their various voyages; and, by a careful comparison and philosophical investigation of these facts, they have ascertained and systematised truths which were before unknown, and have constructed wind and current charts, by the use of which voyages are wonderfully shortened, commercial enterprises greatly facilitated, and the general good and comfort of nations materially advanced.

The truth of this has of late been proved by incontestable facts. For instance, one year particular note was taken of the arrival of all the vessels at the port of San Francisco, in California; and it was found that of 124 vessels from the Atlantic coast of the United States, 70 were possessed of Maury’s wind and current charts. The average passage of these 70 vessels, on that long voyage round Cape Horn, was 135 days; while the average of those that sailed without the charts (that is, trusted to their own unaided wisdom and experience) was 146 days. Between England and Australia the average length of the voyage out used, very recently, to be 124 days. With the aid of these charts it has now been reduced to 97 days on the average.

The saving to commerce thus achieved is much greater than one would suppose. At the risk of becoming tedious to uninquiring readers, we will make a brief extract from Hunt’s “Merchants’ Magazine” of 1854, as given in a foot-note in Maury’s “Physical Geography of the Sea.”

“Now, let us make a calculation of the annual saving to the commerce of the United States effected by these charts and sailing directions. According to Mr Maury, the average freight from the United States to Rio Janeiro is 17.7 cents per ton per day; to Australia, 20 cents; to California, also about 20 cents. The mean of this is a little over 19 cents per ton per day; but, to be within the mark, we will take it at 15, and include all the ports of South America, China, and the East Indies.

“The sailing directions have shortened the passage to California 30 days; to Australia, 20; to Rio Janeiro, 10. The mean of this is 20; but we will take it at 15, and also include the above-named ports of South America, China, and the East Indies.

“We estimate the tonnage of the United States engaged in trade with these places at 1,000,000 tons per annum.

“With these data, we see that there has been effected a saving for each one of these tons, of 15 cents per day for a period of 15 days, which will give an aggregate of 2,250,000 dollars (468,750 pounds) saved per annum. This is on the outward voyage alone, and the tonnage trading with all other parts of the world is also left out of the calculation. Take these into consideration, and also the fact that there is a vast amount of foreign tonnage trading between these places and the United States, and it will be seen that the annual sum saved will swell to an enormous amount.”

Before the existence of the Gulf Stream was ascertained, vessels were frequently drifted far out of their course in cloudy or foggy weather, without the fact being known, until the clearing away of the mists enabled the navigators to ascertain their position by solar observation. Now, not only the existence, but the exact limits and action of this stream are known and mapped; so that the current, which was formerly a hindrance to navigation, is now made to be a help to it. The line of demarcation between the warm waters of the Gulf Stream and the cold waters of the sea is so sharp and distinct, that by the use of the thermometer the precise minute of a ship’s leaving or entering it can be ascertained. And by the simple application of the thermometer to the Gulf Stream the average passage from

1 2 3 4 5 6 7 8 9 10 ... 22
Go to page:

Free e-book: «The Ocean and Its Wonders by R. M. Ballantyne (ebook reader with built in dictionary txt) 📕»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment