From Newton to Einstein by Benjamin Harrow (books to read romance TXT) đź“•
Read free book «From Newton to Einstein by Benjamin Harrow (books to read romance TXT) 📕» - read online or download for free at americanlibrarybooks.com
- Author: Benjamin Harrow
- Performer: -
Read book online «From Newton to Einstein by Benjamin Harrow (books to read romance TXT) 📕». Author - Benjamin Harrow
No one must think that Newton’s great creation can be overthrown in any real sense by this or by any other theory. His clear and wide ideas will for ever retain their significance as the foundation on which our modern conceptions of physics have been built.
1 Republished by permission from “Science.” ↑
BY
Prof. J. S. Ames
Johns Hopkins University
… In the treatment of Maxwell’s equations of the electromagnetic field, several investigators realized the importance of deducing the form of the equations when applied to a system moving with a uniform velocity. One object of such an investigation would be to determine such a set of transformation formulæ as would leave the mathematical form of the equations unaltered. The necessary relations between the new space-coordinates, those applying to the moving system, and the original set were of course obvious; and elementary methods led to the deduction of a new variable which should replace the time coordinate. This step was taken by Lorentz and also, I believe, by Larmor and by Voigt. The mathematical deductions and applications in the hands of these men were extremely beautiful, and are probably well known to you all.
Lorentz’ paper on this subject appeared in the Proceedings of the Amsterdam Academy in 1904. In the following year there was published in the Annalen der Physik a paper by Einstein, written without any knowledge of the work of Lorentz, in which he arrived at the same transformation equations as did the latter, but with an entirely different and fundamentally new interpretation. Einstein called attention in his paper to the lack of definiteness in the concepts of time and space, as ordinarily stated and used. He analyzed clearly the definitions and postulates which were necessary before one could speak with exactness of a length or of an interval of time. He disposed forever of the propriety of speaking of the “true” length of a rod or of the “true” duration of time, showing, in fact, that the numerical values which we attach to lengths or intervals of time depend upon the definitions and postulates which we adopt. The words “absolute” space or time intervals are devoid of meaning. As an illustration of what is meant Einstein discussed two possible ways of measuring the length of a rod when it is moving in the direction of its own length with a uniform velocity, that is, after having adopted a scale of length, two ways of assigning a number to the length of the rod concerned. One method is to imagine the observer moving with the rod, applying along its length the measuring scale, and reading off the positions of the ends of the rod. Another method would be to have two observers at rest on the body with reference to which the rod has the uniform velocity, so stationed along the line of motion of the rod that as the rod moves past them they can note simultaneously on a stationary measuring scale the positions of the two ends of the rod. Einstein showed that, accepting two postulates which need no defense at this time, the two methods of measurements would lead to different numerical values, and, further, that the divergence of the two results would increase as the velocity of the rod was increased. In assigning a number, therefore, to the length of a moving rod, one must make a choice of the method to be used in measuring it. Obviously the preferable method is to agree that the observer shall move with the rod, carrying his measuring instrument with him. This disposes of the problem of measuring space relations. The observed fact that, if we measure the length of the rod on different days, or when the rod is lying in different positions, we always obtain the same value offers no information concerning the “real” length of the rod. It may have changed, or it may not. It must always be remembered that measurement of the length of a rod is simply a process of comparison between it and an arbitrary standard, e.g., a meter-rod or yard-stick. In regard to the problem of assigning numbers to intervals of time, it must be borne in mind that, strictly speaking, we do not “measure” such intervals, i.e., that we do not select a unit interval of time and find how many times it is contained in the interval in question. (Similarly, we do not “measure” the pitch of a sound or the temperature of a room.) Our practical instruments for assigning numbers to time-intervals depend in the main upon our agreeing to believe that a pendulum swings in a perfectly uniform manner, each vibration taking the same time as the next one. Of course we cannot prove that this is true, it is, strictly speaking, a definition of what we mean by equal intervals of time; and it is not a particularly good definition at that. Its limitations are sufficiently obvious. The best way to proceed is to consider the concept of uniform velocity, and then, using the idea of some entity having such a uniform velocity, to define equal intervals of time as such intervals as are required for the entity to traverse equal lengths. These last we have already defined. What is required in addition is to adopt some moving entity as giving our definition of uniform velocity. Considering our known universe it is self-evident that we should choose in our definition of uniform velocity the velocity of light, since this selection could be made by an observer anywhere in our universe. Having agreed then to illustrate by the words “uniform velocity” that of light, our definition of equal intervals of time is complete. This implies, of course, that there is no uncertainty on our part as to the fact that the velocity of light always has the same value at any one point in the universe to any observer, quite regardless of the source of light. In other words, the postulate that this is true underlies our definition. Following this method Einstein developed a system of measuring both space and time intervals. As a matter of fact his system is identically that which we use in daily life with reference to events here on the earth. He further showed that if a man were to measure the length of a rod, for instance, on the earth and then were able to carry the rod and his measuring apparatus to Mars, the sun, or to Arcturus he would obtain the same numerical value for the length in all places and at all times. This doesn’t mean that any statement is implied as to whether the length of the rod has remained unchanged or not; such words do not have any meaning—remember that we can not speak of true length. It is thus clear that an observer living on the earth would have a definite system of units in terms of which to express space and time intervals, i.e., he would have a definite system of space coordinates (x, y, z) and a definite time coordinate (t); and similarly an observer living on Mars would have his system of coordinates (x′, y′, z′, t′). Provided that one observer has a definite uniform velocity with reference to the other, it is a comparatively simple matter to deduce the mathematical relations between the two sets of coordinates. When Einstein did this, he arrived at the same transformation formulæ as those used by Lorentz in his development of Maxwell’s equations. The latter had shown that, using these formulæ, the form of the laws for all electromagnetic phenomena maintained the same form; so Einstein’s method proves that using his system of measurement an observer, anywhere in the universe, would as the result of his own investigation of electromagnetic phenomena arrive at the same mathematical statement of them as any other observer, provided only that the relative-velocity of the two observers was uniform.
Einstein discussed many other most important questions at this time; but it is not necessary to refer to them in connection with the present subject. So far as this is concerned, the next important step to note is that taken in the famous address of Minkowski, in 1908, on the subject of “Space and Time.” It would be difficult to overstate the importance of the concepts advanced by Minkowski. They marked the beginning of a new period in the philosophy of physics. I shall not attempt to explain his ideas in detail, but shall confine myself to a few general statements. His point of view and his line of development of the theme are absolutely different from those of Lorentz or of Einstein; but in the end he makes use of the same transformation formulæ. His great contribution consists in giving us a new geometrical picture of their meaning. It is scarcely fair to call Minkowski’s development a picture; for to us a picture can never have more than three dimensions, our senses limit us; while his picture calls for perception of four dimensions. It is this fact that renders any even semi-popular discussion of Minkowski’s work so impossible. We can all see that for us to describe any event a knowledge of four coordinates is necessary, three for the space specification and one for the time. A complete picture could be given then by a point in four dimensions. All four coordinates are necessary: we never observe an event except at a certain time, and we never observe an instant of time except with reference to space. Discussing the laws of electromagnetic phenomena, Minkowski showed how in a space of four dimensions, by a suitable definition of axes, the mathematical transformation of Lorentz and Einstein could be described by a rotation of the set of axes. We are all accustomed to a rotation of our ordinary cartesian set of axes describing the position of a point. We ordinarily choose our axes at any location on the earth as follows: one vertical, one east and west, one north and south. So if we move from any one laboratory to another, we change our axes; they are always orthogonal, but in moving from place to place there is a rotation. Similarly, Minkowski showed that if we choose four orthogonal axes at any point on the earth, according to his method, to represent a space-time point using the method of measuring space and time intervals as outlined by Einstein; and, if an observer on Arcturus used a similar set of axes and the method of measurement which he naturally would, the set of axes of the latter could be obtained from those of the observer on the earth by a pure rotation (and naturally a transfer of the origin). This is a beautiful geometrical result. To complete my statement of the method, I must add that instead of using as his fourth axis one along which numerical values of time are laid off, Minkowski defined his fourth coordinate as the product of time and the imaginary constant, the square root of minus one. This introduction of imaginary quantities might be expected, possibly, to introduce difficulties; but, in reality, it is the very essence of the simplicity of the geometrical description just given of the rotation of the sets of axes. It thus appears that different observers situated at different points in the universe would each have their own set of axes, all different, yet all connected by the fact that any one can be rotated so as to coincide with any other. This means that there is no one direction in the four-dimensional space
Comments (0)