On the Economy of Machinery and Manufactures by Charles Babbage (english books to improve english TXT) π
The truth however of the principles I have stated, is of muchmore importance than their origin; and the utility of an enquiryinto them, and of establishing others more correct, if theseshould be erroneous, can scarcely admit of a doubt.
The difficulty of understanding the processes of manufactureshas unfortunately bee
Read free book Β«On the Economy of Machinery and Manufactures by Charles Babbage (english books to improve english TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Charles Babbage
- Performer: -
Read book online Β«On the Economy of Machinery and Manufactures by Charles Babbage (english books to improve english TXT) πΒ». Author - Charles Babbage
7. To drag it by these rollers over a wooden floor 28 lbs
8. When the stone was mounted on a wooden platform, and the same
rollers placed between that and a plank floor, it required 22 lbs
From this experiment it results, that the force necessary to
move a stone along
The roughly chiselled floor of its quarry is nearly 2/3
Along a wooden floor 3/5
By wood upon wood 5/9
If the wooden surfaces are soaped 1/6
With rollers on the floor of the quarry 1/32
On rollers on wood 1/40
On rollers between wood 1/50
At each increase of knowledge, as well as on the contrivance
of every new tool, human labour becomes abridged. The man who
contrived rollers, invented a tool by which his power was
quintupled. The workman who first suggested the employment of
soap or grease, was immediately enabled to move, without exerting
a greater effort, more than three times the weight he could
before.(5*)
6. The economy of human time is the next advantage of
machinery in manufactures. So extensive and important is this
effect, that we might, if we were inclined to generalize, embrace
almost all the advantages under this single head: but the
elucidation of principles of less extent will contribute more
readily to a knowledge of the subject; and, as numerous examples
will be presented to the reader in the ensuing pages, we shall
restrict our illustrations upon this point.
As an example of the economy of time, the use of gunpowder in
blasting rocks may be noticed. Several pounds of powder may be
purchased for a sum acquired by a few daysβ labour: yet when this
is employed for the purpose alluded to, effects are frequently
produced which could not, even with the best tools, be
accomplished by other means in less than many months.
The dimensions of one of the blocks of limestone extracted
from the quarries worked for the formation of the breakwater at
Plymouth were 26 1/2 ft long, 13 ft wide, and 16 ft deep. This
mass, containing above 4,800 cubic feet, and weighing about 400
tons, was blasted three times. Two charges of 50 lbs each were
successively exploded in a hole 13 feet deep, the bore being 3
inches at top and 2 1/2 inches at bottom: 100 lbs of powder were
afterwards exploded in the rent formed by those operations. Each
pound of gunpowder separated from the rock two tons of matter, or
nearly 4,500 times its own weight. The expense of the powder was
L 6, or nearly 7 1/2d. per lb: the boring occupied two men during
a day and a half, and cost about 9s.; and the value of the
produce was, at that time, about L 45.
7. The simple contrivance of tin tubes for speaking through,
communicating between different apartments, by which the
directions of the superintendent are instantly conveyed to the
remotest parts of an establishment, produces a considerable
economy of time. It is employed in the shops and manufactories in
London, and might with advantage be used in domestic
establishments, particularly in large houses, in conveying orders
from the nursery to the kitchen, or from the house to the stable.
Its convenience arises not merely from saving the servant or
workman useless journeys to receive directions, but from
relieving the master himself from that indisposition to give
trouble, which frequently induces him to forego a trifling want,
when he knows that his attendant must mount several flights of
stairs to ascertain his wishes, and, after descending, must mount
again to supply them. The distance to which such a mode of
communication can be extended, does not appear to have been
ascertained, and would be an interesting subject for enquiry.
Admitting it to be possible between London and Liverpool, about
seventeen minutes would elapse before the words spoken at one end
would reach the other extremity of the pipe.
8. The art of using the diamond for cutting glass has
undergone, within a few years, a very important improvement. A
glazierβs apprentice, when using a diamond set in a conical
ferrule, as was always the practice about twenty years since,
found great difficulty in acquiring the art of using it with
certainty; and, at the end of a seven yearsβ apprenticeship, many
were found but indifferently skilled in its employment. This
arose from the difficulty of finding the precise angle at which
the diamond cuts, and of guiding it along the glass at the proper
inclination when that angle is found. Almost the whole of the
time consumed and of the glass destroyed in acquiring the art of
cutting glass, may now be saved by the use of an improved tool.
The gem is set in a small piece of squared brass with its edges
nearly parallel to one side of the square. A person skilled in
its use now files away the brass on one side until, by trial, he
finds that the diamond will make a clean cut, when guided by
keeping this edge pressed against a ruler. The diamond and its
mounting are now attached to a stick like a pencil, by means of a
swivel allowing a small angular motion. Thus, even the beginner
at once applies the cutting edge at the proper angle, by pressing
the side of the brass against a ruler; and even though the part
he holds in his hand should deviate a little from the required
angle, it communicates no irregularity to the position of the
diamond, which rarely fails to do its office when thus employed.
The relative hardness of the diamond, in different
directions, is a singular fact. An experienced workman, on whose
judgement I can rely, informed me that he has seen a diamond
ground with diamond powder on a cast-iron mill for three hours
without its being at all worn, but that, on changing its
direction with respect to the grinding surface, the same edge was
ground away.
9. Employment of materials of little value. The skins used by
the goldbeater are produced from the offal of animals. The hoofs
of horses and cattle, and other horny refuse, are employed in the
production of the prussiate of potash, that beautiful, yellow,
crystallized salt, which is exhibited in the shops of some of our
chemists. The worn-out saucepans and tinware of our kitchens,
when beyond the reach of the tinkerβs art, are not utterly
worthless. We sometimes meet carts loaded with old tin kettles
and worn-out iron coal-skuttles traversing our streets. These
have not yet completed their useful course; the less corroded
parts are cut into strips, punched with small holes, and
varnished with a coarse black varnish for the use of the
trunk-maker, who protects the edges and angles of his boxes with
them; the remainder are conveyed to the manufacturing chemists in
the outskirts of the town, who employ them in combination with
pyroligneous acid, in making a black die for the use of calico
printers.
10. Of tools. The difference between a tool and a machine is
not capable of very precise distinction; nor is it necessary, in
a popular explanation of those terms, to limit very strictly
their acceptation. A tool is usually more simple than a machine;
it is generally used with the hand, whilst a machine is
frequently moved by animal or steam power. The simpler machines
are often merely one or more tools placed in a frame, and acted
on by a moving power. In pointing out the advantages of tools, we
shall commence with some of the simplest.
11. To arrange twenty thousand needles thrown promiscuously
into a box, mixed and entangled in every possible direction, in
such a form that they shall be all parallel to each other, would,
at first sight, appear a most tedious occupation; in fact, if
each needle were to be separated individually, many hours must be
consumed in the process. Yet this is an operation which must be
performed many times in the manufacture of needles; and it is
accomplished in a few minutes by a very simple tool; nothing more
being requisite than a small flat tray of sheet iron, slightly
concave at the bottom. In this the needles are placed, and shaken
in a peculiar manner, by throwing them up a very little, and
giving at the same time a slight longitudinal motion to the tray.
The shape of the needles assists their arrangement; for if two
needles cross each other (unless, which is exceedingly
improbable, they happen to be precisely balanced), they will,
when they fall on the bottom of the tray, tend to place
themselves side by side, and the hollow form of the tray assists
this disposition. As they have no projection in any part to
impede this tendency, or to entangle each other, they are, by
continually shaking, arranged lengthwise, in three or four
minutes. The direction of the shake is now changed, the needles
are but little thrown up, but the tray is shaken endways; the
result of which is, that in a minute or two the needles which
were previously arranged endways become heaped up in a wall, with
their ends against the extremity of the tray. They are then
removed, by hundreds at a time, with a broad iron spatula, on
which they are retained by the forefinger of the left hand. As
this parallel arrangement of the needles must be repeated many
times, if a cheap and expeditious method had not been devised,
the expense of the manufacture would have been considerably
enhanced.
12. Another process in the art of making needles furnishes an
example of one of the simplest contrivances which can come under
the denomination of a tool. After the needles have been arranged
in the manner just described, it is necessary to separate them
into two parcels, in order that their points may be all in one
direction. This is usually done by women and children. The
needles are placed sideways in a heap, on a table, in front of
each operator, just as they are arranged by the process above
described. From five to ten are rolled towards this person with
the forefinger of the left hand; this separates them a very small
space from each other, and each in its turn is pushed lengthwise
to the right or to the left, according to the direction of the
point. This is the usual process, and in it every needle passes
individually under the finger of the operator. A small alteration
expedites the process considerably: the child puts on the
forefinger of its right hand a small cloth cap or fingerstall,
and rolling out of the heap from six to twelve needles, he keeps
them down by the forefinger of the left hand, whilst he presses
the forefinger of the right hand gently against their ends: those
which have the points towards the right hand stick into the
fingerstall; and the child, removing the finger of the left hand,
slightly raises the needles sticking into the cloth, and then
pushes them towards the left side. Those needles which had their
eyes on the right hand do not stick into the finger cover, and
are pushed to the heap on the right side before the repetition of
this process. By means of this simple contrivance each movement
of the finger, from one side to the other, carries five or six
needles to their proper heap; whereas, in the former method,
frequently only one was moved, and rarely more than two or three
were transported at one movement to their place.
13. Various operations occur in the arts in which the
assistance of an additional hand would be a great convenience to
the workman, and in these cases tools or machines of the simplest
structure come to our aid: vices of different forms, in
Comments (0)