All About Coffee by William H. Ukers (best new books to read .TXT) đź“•
CHAPTER II
HISTORY OF COFFEE PROPAGATION
A brief account of the cultivation of the coffee plant in the Old World, and of its introduction into the New--A romantic coffee adventure Page 5
CHAPTER III
EARLY HISTORY OF COFFEE DRINKING
Coffee in the Near East in the early centuries--Stories of its origin--Discovery by physicians and adoption by the Church--Its spread through Arabia, Persia, and Turkey--Persecutions and Intolerances--Early coffee manners and customs Page 11
CHAPTER IV
INTRODUCTION OF COFFEE INTO WESTERN EUROPE
When the three great temperance beverages, cocoa, tea, and coffee, came to Europe--Coffee first mentioned by Rauwolf in 1582--Early days of coffee in Italy--How Pope Clement VIII baptized it and made it a truly Christian beverage--The first Europe
Read free book «All About Coffee by William H. Ukers (best new books to read .TXT) 📕» - read online or download for free at americanlibrarybooks.com
- Author: William H. Ukers
- Performer: -
Read book online «All About Coffee by William H. Ukers (best new books to read .TXT) 📕». Author - William H. Ukers
The general method of procedure employed in the preparation of these powders is to extract ground roasted coffee with water, and to evaporate the aqueous solution to dryness with great care. The major difficulty which seems to arise is that the heat needed to effect evaporation changes the character of the soluble material, at the same time driving off some volatile constituents which are essential to a natural flavor. Many complex and clever processes have been developed for avoiding these difficulties, and quite a number of patents on processes, and several on the resultant product, have been allowed; but the commercial production of a soluble coffee of freshly-brewed-coffee-duplicating-power is yet to be accomplished. However, there are now on the market several coffee-extract powders which dissolve readily in water, giving quite a fair approximation of freshly brewed coffee. The improvement shown since they first appeared augurs well for the eventual attainment of their ultimate goal.
Adulterants and Substitutes
There would appear to be three reasons why substitutes for coffee are sought—the high cost, or absence, of the real product; the acquiring of a preferential taste, by the consumer, for the substitute; and the injurious effects of coffee when used to excess. Makers of coffee substitutes usually emphasize the latter reason; but many substitutes, which are, or have been, on the market, seem to depend for their existence on the other two. Properly speaking, there are scarcely any real substitutes for coffee. The substances used to replace it are mostly like it only in appearance, and barely simulate it in taste. Besides, many of them are not used alone, but are mixed with real coffee as adulterants.
The two main coffee substitutes are chicory and cereals. Chicory, succory, Cichorium Intybus, is a perennial plant, growing to a height of about three feet, bearing blue flowers, having a long tap root, and possessing a foliage which is sometimes used as cattle food. The plant is cultivated generally for the sake of its root, which is cut into slices, kiln-dried, and then roasted in the same manner as coffee, usually with the addition of a small proportion of some kind of fat. The preparation and use of roasted chicory originated in Holland, about 1750. Fresh chicory[183] contains about 77 percent water, 7.5 gummy matter, 1.1 of glucose, 4.0 of bitter extractive, 0.6 fat, 9.0 cellulose, inulin and fiber, and 0.8 ash. Pure roasted chicory[184] contains 74.2 percent water-soluble material, comprised of 16.3 percent water, 26.1 glucose, 9.6 dextrin and inulin, 3.2 protein, 16.4 coloring matter, and 2.6 ash; and 25.8 percent insoluble substances, namely, 3.2 percent protein, 5.7 fat, 12.3 cellulose, and 4.6 ash. The effect of roasting upon chicory is to drive off a large percentage of water, increasing the reducing sugars, changing a large proportion of the bitter extractives and inulin, and forming dextrin and caramel as well as the characteristic chicory flavor.
The cereal substitutes contain almost every type of grain, mainly wheat, rye, oats, buckwheat, and bran. They are prepared in two general ways, by roasting the grains, or the mixtures of grains, with or without the addition of such substances as sugar, molasses, tannin, citric acid, etc., or by first making the floured grains into a dough, and then baking, grinding, and roasting. Prior to these treatments, the grains may be subjected to a variety of other treatments, such as impregnation with various compounds, or germination. The effect of roasting on these grains and other substitutes is the production of a destructive distillation, as in the case of coffee; the crude fiber, starches, and other carbohydrates, etc., being decomposed, with the production of a flavor and an aroma faintly suggesting coffee.
The number, of other substitutes and imitations which have been employed are too numerous to warrant their complete description; but it will prove interesting to enumerate a few of the more important ones, such as malt, starch, acorns, soya beans, beet roots, figs, prunes, date stones, ivory nuts, sweet potatoes, beets, carrots, peas, and other vegetables, bananas, dried pears, grape seeds, dandelion roots, rinds of citrus fruits, lupine seeds, whey, peanuts, juniper berries, rice, the fruit of the wax palm, cola nuts, chick peas, cassia seeds, and the seeds of any trees and plants indigenous to the country in which the substitute is produced.
Aside from adulteration by mixing substitutes with ground coffee, and an occasional case of factitious molded berries, the main sophistications of coffee comprise coating and coloring the whole beans. Coloring of green and roasted coffees is practised to conceal damaged and inferior beans. Lead and zinc chromates, Prussian blue, ferric oxid, coal-tar colors, and other substances of a harmful nature, have been employed for this purpose, being made to adhere to the beans with adhesives. As glazes and coatings, a variety of substances have been employed, such as butter, margarin, vegetable oils, paraffin, vaseline, gums, dextrin, gelatin, resins, glue, milk, glycerin, salt, sodium bicarbonate, vinegar, Irish moss, isinglass, albumen, etc. It is usually claimed that coating is applied to retain aroma and to act as a clarifying agent; but the real reasons are usually to increase weight through absorption of water, to render low-grade coffees more attractive, to eliminate by-products, and to assist in advertising.
METHODS OF ANALYSIS OF COFFEES[185]
(Official and Tentative)
(Sole responsibility for any errors in compilation or printing of these methods is assumed by the author.)
Green Coffee
1. Macroscopic Examination—Tentative
A macroscopic examination is usually sufficient to show the presence of excessive amounts of black and blighted coffee beans, coffee hulls, stones, and other foreign matter. These can be separated by hand-picking and determined gravi-metrically.
2. Coloring Matters—Tentative
Shake vigorously 100 grams or more of the sample with cold water or 70 percent alcohol by volume. Strain through a coarse sieve and allow to settle. Identify soluble colors in the solution and insoluble pigments in the sediment.
Roasted Coffee
3. Macroscopic Examination—Tentative
Artificial coffee beans are apparent from their exact regularity of form. Roasted legumes and lumps of chicory, when present in whole roasted coffee, can be picked out and identified microscopically. In the case of ground coffee, sprinkle some of the sample on cold water and stir lightly. Fragments of pure coffee, if not over-roasted, will float; while fragments of chicory, legumes, cereals, etc., will sink immediately, chicory coloring the water a decided brown. In all cases identify the particles that sink by microscopical examination.
4. Preparation of Sample—Official
Grind the sample to pass through a sieve having holes 0.5 mm. in diameter and preserve in a tightly stoppered bottle.
5. Moisture—Tentative
Dry 5 grams of the sample at 105°—110°C. for 5 hours and subsequent periods of an hour each until constant weight is obtained. The same procedure may be used, drying in vacuo at the temperature of boiling water. In the case of whole coffee, grind rapidly to a coarse powder and weigh at once portions for the determination without sifting and without unnecessary exposure to the air.
6. Soluble Solids—Tentative
Place 4 grams of the sample in a 200-cc. flask, add water to the mark, and allow the mass to infuse for eight hours, with occasional shaking; let stand 16 hours longer without shaking, filter, evaporate 50 cc. of filtrate to dryness in a flat-bottomed dish, dry at 100° C., cool and weigh.
7. Ash—Official
Char a quantity of the substance, representing about 2 grams of the dry material, and burn until free of carbon at a low heat, not to exceed dull redness. If a carbon-free ash can not be obtained in this manner, exhaust the charred mass with hot water, collect the insoluble residue on a filter, burn till the ash is white or nearly so, and then add the filtrate to the ash and evaporate to dryness. Heat to low redness, until ash is white or grayish white, and weigh.
8. Ash Insoluble in Acid—Official
Boil the water-insoluble residue, obtained as directed under 9, or the total ash obtained as directed under 7, with 25 cc. of 10-percent hydrochloric acid (sp. gr. 1.050) for 5 minutes, collect the insoluble matter on a Gooch crucible or an ashless filter, wash with hot water, ignite and weigh.
9. Soluble and Insoluble Ash—Official
Heat 5 to 10 grams of the sample in a platinum dish of from 50 to 100 cc. capacity at 100° C. until the water is expelled, and add a few drops of pure olive oil and heat slowly over a flame until swelling ceases. Then place the dish in a muffle and heat at low redness until a white ash is obtained. Add water to the ash, in the platinum dish, heat nearly to boiling, filter through ash-free filter paper, and wash with hot water until the combined filtrate and washings measure to about 60 cc. Return the filter and contents to the platinum dish, carefully ignite, cool and weigh. Compute percentages of water-insoluble ash and water-soluble ash.
10. Alkalinity of the Soluble Ash—Official
Cool the filtrate from 9 and titrate with N/10 hydrochloric acid, using methyl orange as an indicator.
Express the alkalinity in terms of the number of cc. of N/10 acid per 1 gram of the sample.
11. Soluble Phosphoric Acid in the Ash—Official
Acidify the solution of soluble ash, obtained in 9, with dilute nitric acid and determine phosphoric acid (P2O5). For percentages up to 5 use an aliquot corresponding to 0.4 gram of substance, for percentages between 5 and 20 use an aliquot corresponding to 0.2 gram of substance, and for percentages above 20 use an aliquot corresponding to 0.1 gram of substance. Dilute to 75–100 cc., heat in a water-bath to 60°–65° C., and for percentages below 5 add 20–25 cc. of freshly filtered molybdate solution. For percentages between 5 and 20 add 30–35 cc. of molybdate solution. For percentages greater than 20 add sufficient molybdate solution to insure complete precipitation. Stir, let stand in the bath for about 15 minutes, filter at once, wash once or twice with water by decantation, using 25–30 cc. each time, agitate the precipitate thoroughly and allow to settle; transfer to the filter and wash with cold water until the filtrate from two fillings of the filter yields a pink color upon the addition of phenolphthalein and one drop of the standard alkali. Transfer the precipitate and filter to the beaker, or precipitating vessel, dissolve the precipitate in a small excess of the standard alkali, add a few drops of phenolphthalein solution, and titrate with the standard acid.
12. Insoluble Phosphoric Acid in the Ash—Official
Determine phosphoric acid (P2O5) in the Insoluble ash by the foregoing method.
13. Chlorides—Official
Moisten 5 grams of the substance in a platinum dish with 20 cc. of a 5-percent solution of sodium carbonate, evaporate to dryness and ignite as thoroughly as possible at a temperature not exceeding dull redness. Extract with hot water, filter and wash. Return the residue to the platinum dish and ignite to an ash; dissolve in nitric acid, and add this solution to the water extract. Add a known volume of N/10 silver nitrate in slight excess to the combined solutions. Stir well, filter and wash the silver chloride precipitate thoroughly. To the filtrate and washings add 5 cc. of a saturated solution of ferric alum and a few cc. of nitric acid. Titrate the excess silver with N/10 ammonium or potassium thiocyanate until a permanent light brown color appears. Calculate the amount of chlorin.
14. Caffein—The Fendler and Stüber Method—Tentative
Pulverize the coffee to pass without residue through a sieve having circular openings 1 mm. in diameter. Treat a 10-gram sample with 10 grams of 10-percent ammonium hydroxid and 200 grams of chloroform
Comments (0)