The Origin of Species by Charles Darwin (ebook smartphone TXT) π
Description
The Origin of Species by Charles Darwin must rank as one of the most influential and consequential books ever published, initiating scientific, social and religious ferment ever since its first publication in 1859. Its full title is The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, in some editions prefaced by the word βOn.β
Darwin describes the book as simply an βabstractβ of his ideas, which are more fully fleshed out and supported with detailed examples in his other, more scholarly works (for example, he wrote several long treatises entirely about barnacles). The Origin of Species itself was intended to reach a wider audience and is written in such a way that any reasonably educated and thoughtful reader can follow Darwinβs argument that species of animals and plants are not independent creations, fixed for all time, but mutable. Species have been shaped in response to the effects of natural selection, which Darwin compares to the directed or manual selection by human breeders of domesticated animals.
The Origin of Species was eagerly taken up by the reading public, and rapidly went through several editions. This Standard Ebooks edition is based on the sixth edition published by John Murray in 1872, generally considered to be the definitive edition with many amendments and updates by Darwin himself.
The Origin of Species has never been out of print and continues to be an extremely popular work. Later scientific discoveries such as the breakthrough of DNA sequencing have refined our concept of some of Darwinβs ideas and given us a better understanding of issues he found puzzling, but the basic thrust of his theory remains unchallenged.
Read free book Β«The Origin of Species by Charles Darwin (ebook smartphone TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Charles Darwin
Read book online Β«The Origin of Species by Charles Darwin (ebook smartphone TXT) πΒ». Author - Charles Darwin
Extinction, as we have seen in the fourth chapter, has played an important part in defining and widening the intervals between the several groups in each class. We may thus account for the distinctness of whole classes from each otherβ βfor instance, of birds from all other vertebrate animalsβ βby the belief that many ancient forms of life have been utterly lost, through which the early progenitors of birds were formerly connected with the early progenitors of the other and at that time less differentiated vertebrate classes. There has been much less extinction of the forms of life which once connected fishes with Batrachians. There has been still less within some whole classes, for instance the Crustacea, for here the most wonderfully diverse forms are still linked together by a long and only partially broken chain of affinities. Extinction has only defined the groups: it has by no means made them; for if every form which has ever lived on this earth were suddenly to reappear, though it would be quite impossible to give definitions by which each group could be distinguished, still a natural classification, or at least a natural arrangement, would be possible. We shall see this by turning to the diagram: the letters, A to L, may represent eleven Silurian genera, some of which have produced large groups of modified descendants, with every link in each branch and sub-branch still alive; and the links not greater than those between existing varieties. In this case it would be quite impossible to give definitions by which the several members of the several groups could be distinguished from their more immediate parents and descendants. Yet the arrangement in the diagram would still hold good and would be natural; for, on the principle of inheritance, all the forms descended, for instance from A, would have something in common. In a tree we can distinguish this or that branch, though at the actual fork the two unite and blend together. We could not, as I have said, define the several groups; but we could pick out types, or forms, representing most of the characters of each group, whether large or small, and thus give a general idea of the value of the differences between them. This is what we should be driven to, if we were ever to succeed in collecting all the forms in any one class which have lived throughout all time and space. Assuredly we shall never succeed in making so perfect a collection: nevertheless, in certain classes, we are tending toward this end; and Milne Edwards has lately insisted, in an able paper, on the high importance of looking to types, whether or not we can separate and define the groups to which such types belong.
Finally, we have seen that natural selection, which follows from the struggle for existence, and which almost inevitably leads to extinction and divergence of character in the descendants from any one parent-species, explains that great and universal feature in the affinities of all organic beings, namely, their subordination in group under group. We use the element of descent in classing the individuals of both sexes and of all ages under one species, although they may have but few characters in common; we use descent in classing acknowledged varieties, however different they may be from their parents; and I believe that this element of descent is the hidden bond of connection which naturalists have sought under the term of the Natural System. On this idea of the natural system being, in so far as it has been perfected, genealogical in its arrangement, with the grades of difference expressed by the terms genera, families, orders, etc., we can understand the rules which we are compelled to follow in our classification. We can understand why we value certain resemblances far more than others; why we use rudimentary and useless organs, or others of trifling physiological importance; why, in finding the relations between one group and another, we summarily reject analogical or adaptive characters, and yet use these same characters within the limits of the same group. We can clearly see how it is that all living and extinct forms can be grouped together within a few great classes; and how the several members of each class are connected together by the most complex and radiating lines of affinities. We shall never, probably, disentangle the inextricable web of the affinities between the members of any one class; but when we have a distinct object in view, and do not look to some unknown plan of creation, we may hope to make sure but slow progress.
Professor Haeckel in his Generelle Morphologie and in other works, has recently brought his great knowledge and abilities to bear on what he calls phylogeny, or the lines of descent of all organic beings. In drawing up the several series he trusts chiefly to embryological characters, but receives aid from homologous and rudimentary organs, as well as from the successive periods at which the various forms of life are believed to have first appeared in our geological formations. He has thus boldly made a great beginning, and shows us how classification will in the future be treated.
MorphologyWe have seen that the members of the same class, independently of their habits of life, resemble each other in the general plan of their organisation. This resemblance is often expressed by the term βunity of type;β or by saying that the several parts and organs in the different species of the class are homologous. The whole subject is included under the general term of Morphology. This is one of the most interesting departments of natural history, and may almost be said to be its very soul. What can be
Comments (0)