The Origin of Species by Charles Darwin (ebook smartphone TXT) π
Description
The Origin of Species by Charles Darwin must rank as one of the most influential and consequential books ever published, initiating scientific, social and religious ferment ever since its first publication in 1859. Its full title is The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, in some editions prefaced by the word βOn.β
Darwin describes the book as simply an βabstractβ of his ideas, which are more fully fleshed out and supported with detailed examples in his other, more scholarly works (for example, he wrote several long treatises entirely about barnacles). The Origin of Species itself was intended to reach a wider audience and is written in such a way that any reasonably educated and thoughtful reader can follow Darwinβs argument that species of animals and plants are not independent creations, fixed for all time, but mutable. Species have been shaped in response to the effects of natural selection, which Darwin compares to the directed or manual selection by human breeders of domesticated animals.
The Origin of Species was eagerly taken up by the reading public, and rapidly went through several editions. This Standard Ebooks edition is based on the sixth edition published by John Murray in 1872, generally considered to be the definitive edition with many amendments and updates by Darwin himself.
The Origin of Species has never been out of print and continues to be an extremely popular work. Later scientific discoveries such as the breakthrough of DNA sequencing have refined our concept of some of Darwinβs ideas and given us a better understanding of issues he found puzzling, but the basic thrust of his theory remains unchallenged.
Read free book Β«The Origin of Species by Charles Darwin (ebook smartphone TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Charles Darwin
Read book online Β«The Origin of Species by Charles Darwin (ebook smartphone TXT) πΒ». Author - Charles Darwin
With some animals the successive variations may have supervened at a very early period of life, or the steps may have been inherited at an earlier age than that at which they first occurred. In either of these cases the young or embryo will closely resemble the mature parent-form, as we have seen with the short-faced tumbler. And this is the rule of development in certain whole groups, or in certain subgroups alone, as with cuttlefish, land-shells, freshwater crustaceans, spiders, and some members of the great class of insects. With respect to the final cause of the young in such groups not passing through any metamorphosis, we can see that this would follow from the following contingencies: namely, from the young having to provide at a very early age for their own wants, and from their following the same habits of life with their parents; for in this case it would be indispensable for their existence that they should be modified in the same manner as their parents. Again, with respect to the singular fact that many terrestrial and freshwater animals do not undergo any metamorphosis, while marine members of the same groups pass through various transformations, Fritz Muller has suggested that the process of slowly modifying and adapting an animal to live on the land or in fresh water, instead of in the sea, would be greatly simplified by its not passing through any larval stage; for it is not probable that places well adapted for both the larval and mature stages, under such new and greatly changed habits of life, would commonly be found unoccupied or ill-occupied by other organisms. In this case the gradual acquirement at an earlier and earlier age of the adult structure would be favoured by natural selection; and all traces of former metamorphoses would finally be lost.
If, on the other hand, it profited the young of an animal to follow habits of life slightly different from those of the parent-form, and consequently to be constructed on a slightly different plan, or if it profited a larva already different from its parent to change still further, then, on the principle of inheritance at corresponding ages, the young or the larvae might be rendered by natural selection more and more different from their parents to any conceivable extent. Differences in the larva might, also, become correlated with successive stages of its development; so that the larva, in the first stage, might come to differ greatly from the larva in the second stage, as is the case with many animals. The adult might also become fitted for sites or habits, in which organs of locomotion or of the senses, etc., would be useless; and in this case the metamorphosis would be retrograde.
From the remarks just made we can see how by changes of structure in the young, in conformity with changed habits of life, together with inheritance at corresponding ages, animals might come to pass through stages of development, perfectly distinct from the primordial condition of their adult progenitors. Most of our best authorities are now convinced that the various larval and pupal stages of insects have thus been acquired through adaptation, and not through inheritance from some ancient form. The curious case of Sitarisβ βa beetle which passes through certain unusual stages of developmentβ βwill illustrate how this might occur. The first larval form is described by M. Fabre, as an active, minute insect, furnished with six legs, two long antennae, and four eyes. These larvae are hatched in the nests of bees; and when the male bees emerge from their burrows, in the spring, which they do before the females, the larvae spring on them, and afterwards crawl on to the females while paired with the males. As soon as the female bee deposits her eggs on the surface of the honey stored in the cells, the larvae of the Sitaris leap on the eggs and devour them. Afterwards they undergo a complete change; their eyes disappear; their legs and antennae become rudimentary, and they feed on honey; so that they now more closely resemble the ordinary larvae of insects; ultimately they undergo a further transformation, and finally emerge as the perfect beetle. Now, if an insect, undergoing transformations like those of the Sitaris, were to become the progenitor of a whole new class of insects, the course of development of the new class would be widely different from that of our existing insects; and the first larval stage certainly would not represent the former condition
Comments (0)