The Origin of Species by Charles Darwin (ebook smartphone TXT) π
Description
The Origin of Species by Charles Darwin must rank as one of the most influential and consequential books ever published, initiating scientific, social and religious ferment ever since its first publication in 1859. Its full title is The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, in some editions prefaced by the word βOn.β
Darwin describes the book as simply an βabstractβ of his ideas, which are more fully fleshed out and supported with detailed examples in his other, more scholarly works (for example, he wrote several long treatises entirely about barnacles). The Origin of Species itself was intended to reach a wider audience and is written in such a way that any reasonably educated and thoughtful reader can follow Darwinβs argument that species of animals and plants are not independent creations, fixed for all time, but mutable. Species have been shaped in response to the effects of natural selection, which Darwin compares to the directed or manual selection by human breeders of domesticated animals.
The Origin of Species was eagerly taken up by the reading public, and rapidly went through several editions. This Standard Ebooks edition is based on the sixth edition published by John Murray in 1872, generally considered to be the definitive edition with many amendments and updates by Darwin himself.
The Origin of Species has never been out of print and continues to be an extremely popular work. Later scientific discoveries such as the breakthrough of DNA sequencing have refined our concept of some of Darwinβs ideas and given us a better understanding of issues he found puzzling, but the basic thrust of his theory remains unchallenged.
Read free book Β«The Origin of Species by Charles Darwin (ebook smartphone TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Charles Darwin
Read book online Β«The Origin of Species by Charles Darwin (ebook smartphone TXT) πΒ». Author - Charles Darwin
The advantage of diversification of structure in the inhabitants of the same region is, in fact, the same as that of the physiological division of labour in the organs of the same individual bodyβ βa subject so well elucidated by Milne Edwards. No physiologist doubts that a stomach by being adapted to digest vegetable matter alone, or flesh alone, draws most nutriment from these substances. So in the general economy of any land, the more widely and perfectly the animals and plants are diversified for different habits of life, so will a greater number of individuals be capable of there supporting themselves. A set of animals, with their organisation but little diversified, could hardly compete with a set more perfectly diversified in structure. It may be doubted, for instance, whether the Australian marsupials, which are divided into groups differing but little from each other, and feebly representing, as Mr. Waterhouse and others have remarked, our carnivorous, ruminant, and rodent mammals, could successfully compete with these well-developed orders. In the Australian mammals, we see the process of diversification in an early and incomplete stage of development.
The Probable Effects of the Action of Natural Selection Through Divergence of Character and Extinction, on the Descendants of a Common AncestorAfter the foregoing discussion, which has been much compressed, we may assume that the modified descendants of any one species will succeed so much the better as they become more diversified in structure, and are thus enabled to encroach on places occupied by other beings. Now let us see how this principle of benefit being derived from divergence of character, combined with the principles of natural selection and of extinction, tends to act.
The accompanying diagram will aid us in understanding this rather perplexing subject. Let A to L represent the species of a genus large in its own country; these species are supposed to resemble each other in unequal degrees, as is so generally the case in nature, and as is represented in the diagram by the letters standing at unequal distances. I have said a large genus, because as we saw in the second chapter, on an average more species vary in large genera than in small genera; and the varying species of the large genera present a greater number of varieties. We have, also, seen that the species, which are the commonest and most widely-diffused, vary more than do the rare and restricted species. Let (A) be a common, widely-diffused, and varying species, belonging to a genus large in its own country. The branching and diverging dotted lines of unequal lengths proceeding from (A), may represent its varying offspring. The variations are supposed to be extremely slight, but of the most diversified nature; they are not supposed all to appear simultaneously, but often after long intervals of time; nor are they all supposed to endure for equal periods. Only those variations which are in some way profitable will be preserved or naturally selected. And here the importance of the principle of benefit derived from divergence of character comes in; for this will generally lead to the most different or divergent variations (represented by the outer dotted lines) being preserved and accumulated by natural selection. When a dotted line reaches one of the horizontal lines, and is there marked by a small numbered letter, a sufficient amount of variation is supposed to have been accumulated to form it into a fairly well-marked variety, such as would be thought worthy of record in a systematic work.
The intervals between the horizontal lines in the diagram, may represent each a thousand or more generations. After a thousand generations, species (A) is supposed to have produced two fairly well-marked varieties, namely a1 and m1. These two varieties will generally still be exposed to the same conditions which made their parents variable, and the tendency to variability is in itself hereditary; consequently they will likewise tend to vary, and commonly in nearly the same manner as did their parents. Moreover, these two varieties, being only slightly modified forms, will tend to inherit those advantages which made their parent (A) more numerous than most of the other inhabitants of the same country; they will also partake of those more general advantages which made the genus to which the parent-species belonged, a large genus in its own country. And all these circumstances are favourable to the production of new varieties.
If, then, these two varieties be variable, the most divergent of their variations will generally be preserved during the next thousand generations. And after this interval, variety a1 is supposed in the diagram to have produced variety a2, which will, owing to the principle of divergence, differ more from (A) than did variety a1. Variety m1 is supposed to have produced two varieties, namely m2 and s2, differing from each other, and more considerably from their common parent (A). We may continue the process by similar steps for any length of time; some of the varieties, after each thousand generations, producing only a single variety, but in a more and more modified condition, some producing two or three varieties, and some failing to produce any. Thus the varieties or modified descendants of the common parent (A), will generally go on increasing in number and diverging in character. In the diagram the process is represented up to the ten-thousandth generation, and under a condensed and simplified form up to the fourteen-thousandth generation.
But I must here remark that I do not suppose that the process ever goes on so regularly as is represented in the diagram, though in itself made
Comments (0)