American library books Β» Philosophy Β» A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πŸ“•

Read book online Β«A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πŸ“•Β».   Author   -   John Stuart Mill



1 ... 27 28 29 30 31 32 33 34 35 ... 106
Go to page:
names will do this: for the name of each class must necessarily connote enough of its properties to fix the boundaries of the class. If the definition, therefore, be a full statement of the connotation, it is all that a definition can be required to be.

Β§ 5. Of the two incomplete and popular modes of definition, and in what they differ from the complete or philosophical mode, enough has now been said. We shall next examine an ancient doctrine, once generally prevalent and still by no means exploded, which I regard as the source of a great part of the obscurity hanging over some of the most important processes of the understanding in the pursuit of truth. According to this, the definitions of which we have now treated are only one of two sorts into which definitions may be divided, viz. definitions of names, and definitions of things. The former are intended to explain the meaning of a term; the latter, the nature of a thing; the last being incomparably the most important.

This opinion was held by the ancient philosophers, and by their followers, with the exception of the Nominalists; but as the spirit of modern metaphysics, until a recent period, has been on the whole a Nominalist spirit, the notion of definitions of things has been to a certain extent in abeyance, still continuing, however, to breed confusion in logic, by its consequences indeed rather than by itself. Yet the doctrine in its own proper form now and then breaks out, and has appeared (among other places) where it was scarcely to be expected, in a justly admired work, Archbishop Whately's Logic.[27] In a review of that work published by me in the Westminster Review for January 1828, and containing some opinions which I no longer entertain, I find the following observations on the question now before us; observations with which my present view of that question is still sufficiently in accordance.

"The distinction between nominal and real definitions, between definitions of words and what are called definitions of things, though conformable to the ideas of most of the Aristotelian logicians, cannot, as it appears to us, be maintained. We apprehend that no definition is ever intended to 'explain and unfold the nature of a thing.' It is some confirmation of our opinion, that none of those writers who have thought that there were definitions of things, have ever succeeded in discovering any criterion by which the definition of a thing can be distinguished from any other proposition relating to the thing. The definition, they say, unfolds the nature of the thing: but no definition can unfold its whole nature; and every proposition in which any quality whatever is predicated of the thing, unfolds some part of its nature. The true state of the case we take to be this. All definitions are of names, and of names only; but, in some definitions, it is clearly apparent, that nothing is intended except to explain the meaning of the word; while in others, besides explaining the meaning of the word, it is intended to be implied that there exists a thing, corresponding to the word. Whether this be or be not implied in any given case, cannot be collected from the mere form of the expression. 'A centaur is an animal with the upper parts of a man and the lower parts of a horse,' and 'A triangle is a rectilineal figure with three sides,' are, in form, expressions precisely similar; although in the former it is not implied that any thing, conformable to the term, really exists, while in the latter it is; as may be seen by substituting, in both definitions, the word means for is. In the first expression, 'A centaur means an animal,' &c., the sense would remain unchanged: in the second, 'A triangle means,' &c., the meaning would be altered, since it would be obviously impossible to deduce any of the truths of geometry from a proposition expressive only of the manner in which we intend to employ a particular sign.

"There are, therefore, expressions, commonly passing for definitions, which include in themselves more than the mere explanation of the meaning of a term. But it is not correct to call an expression of this sort a peculiar kind of definition. Its difference from the other kind consists in this, that it is not a definition, but a definition and something more. The definition above given of a triangle, obviously comprises not one, but two propositions, perfectly distinguishable. The one is, 'There may exist a figure, bounded by three straight lines;' the other, 'And this figure may be termed a triangle.' The former of these propositions is not a definition at all: the latter is a mere nominal definition, or explanation of the use and application of a term. The first is susceptible of truth or falsehood, and may therefore be made the foundation of a train of reasoning. The latter can neither be true nor false; the only character it is susceptible of is that of conformity or disconformity to the ordinary usage of language."

There is a real distinction, then, between definitions of names, and what are erroneously called definitions of things; but it is, that the latter, along with the meaning of a name, covertly asserts a matter of fact. This covert assertion is not a definition, but a postulate. The definition is a mere identical proposition, which gives information only about the use of language, and from which no conclusions affecting matters of fact can possibly be drawn. The accompanying postulate, on the other hand, affirms a fact, which may lead to consequences of every degree of importance. It affirms the actual or possible existence of Things possessing the combination of attributes set forth in the definition; and this, if true, may be foundation sufficient on which to build a whole fabric of scientific truth.

We have already made, and shall often have to repeat, the remark, that the philosophers who overthrew Realism by no means got rid of the consequences of Realism, but retained long afterwards, in their own philosophy, numerous propositions which could only have a rational meaning as part of a Realistic system. It had been handed down from Aristotle, and probably from earlier times, as an obvious truth, that the science of Geometry is deduced from definitions. This, so long as a definition was considered to be a proposition "unfolding the nature of the thing," did well enough. But Hobbes followed, and rejected utterly the notion that a definition declares the nature of the thing, or does anything but state the meaning of a name; yet he continued to affirm as broadly as any of his predecessors, that the ἀρχαὢ, principia, or original premises of mathematics, and even of all science, are definitions; producing the singular paradox, that systems of scientific truth, nay, all truths whatever at which we arrive by reasoning, are deduced from the arbitrary conventions of mankind concerning the signification of words.

To save the credit of the doctrine that definitions are the premises of scientific knowledge, the proviso is sometimes added, that they are so only under a certain condition, namely, that they be framed conformably to the phenomena of nature; that is, that they ascribe such meanings to terms as shall suit objects actually existing. But this is only an instance of the attempt so often made, to escape from the necessity of abandoning old language after the ideas which it expresses have been exchanged for contrary ones. From the meaning of a name (we are told) it is possible to infer physical facts, provided the name has corresponding to it an existing thing. But if this proviso be necessary, from which of the two is the inference really drawn? From the existence of a thing having the properties, or from the existence of a name meaning them?

Take, for instance, any of the definitions laid down as premises in Euclid's Elements; the definition, let us say, of a circle. This, being analysed, consists of two propositions; the one an assumption with respect to a matter of fact, the other a genuine definition. "A figure may exist, having all the points in the line which bounds it equally distant from a single point within it:" "Any figure possessing this property is called a circle." Let us look at one of the demonstrations which are said to depend on this definition, and observe to which of the two propositions contained in it the demonstration really appeals. "About the centre A, describe the circle B C D." Here is an assumption that a figure, such as the definition expresses, may be described; which is no other than the postulate, or covert assumption, involved in the so-called definition. But whether that figure be called a circle or not is quite immaterial. The purpose would be as well answered, in all respects except brevity, were we to say, "Through the point B, draw a line returning into itself, of which every point shall be at an equal distance from the point A." By this the definition of a circle would be got rid of, and rendered needless; but not the postulate implied in it; without that the demonstration could not stand. The circle being now described, let us proceed to the consequence. "Since B C D is a circle, the radius B A is equal to the radius C A." B A is equal to C A, not because B C D is a circle, but because B C D is a figure with the radii equal. Our warrant for assuming that such a figure about the centre A, with the radius B A, may be made to exist, is the postulate. Whether the admissibility of these postulates rests on intuition, or on proof, may be a matter of dispute; but in either case they are the premises on which the theorems depend; and while these are retained it would make no difference in the certainty of geometrical truths, though every definition in Euclid, and every technical term therein defined, were laid aside.

It is, perhaps, superfluous to dwell at so much length on what is so nearly self-evident; but when a distinction, obvious as it may appear, has been confounded, and by powerful intellects, it is better to say too much than too little for the purpose of rendering such mistakes impossible in future. I will, therefore, detain the reader while I point out one of the absurd consequences flowing from the supposition that definitions, as such, are the premises in any of our reasonings, except such as relate to words only. If this supposition were true, we might argue correctly from true premises, and arrive at a false conclusion. We should only have to assume as a premise the definition of a nonentity; or rather of a name which has no entity corresponding to it. Let this, for instance, be our definition:

A dragon is a serpent breathing flame.

This proposition, considered only as a definition, is indisputably correct. A dragon is a serpent breathing flame: the word means that. The tacit assumption, indeed, (if there were any such understood assertion), of the existence of an object with properties corresponding to the definition, would, in the present instance, be false. Out of this definition we may carve the premises of the following syllogism:

A dragon is a thing which breathes flame:
A dragon is a serpent:

From which the conclusion is,

Therefore some serpent or serpents breathe flame:β€”

an unexceptionable syllogism in the first mode of the third figure, in which both premises are true and yet the conclusion false; which every logician knows to be an absurdity. The conclusion being false and the syllogism correct, the premises cannot be true. But the premises, considered as parts of a definition, are true. Therefore,

1 ... 27 28 29 30 31 32 33 34 35 ... 106
Go to page:

Free e-book: Β«A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment