A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) π
3. Some of the first principles of geometry are axioms, and these are not hypothetical 256
4. --but are experimental truths 258
5. An objection answered 261
6. Dr. Whewell's opinions on axioms examined 264
CHAPTER VI.
The same Subject continued.
Sec. 1. All deductive sciences are inductive 281
2. The propositions of the science of number are not verbal, but generalizations from experience 284
3. In what sense hypothetical 289
4. The characteristic property of demonstrative science is to be hypothetical 290
5. Definition of demonstrative evidence 292
CHAPTER VII.
Examination of some Opinions opposed to the preceding doctrines.
Sec. 1. Doctrine of the Universal Postulate 294
2. The test of inconceivability does not
Read free book Β«A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: John Stuart Mill
- Performer: -
Read book online Β«A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πΒ». Author - John Stuart Mill
We here close our remarks on the Plurality of Causes, and proceed to the still more peculiar and more complex case of the Intermixture of Effects, and the interference of causes with one another: a case constituting the principal part of the complication and difficulty of the study of nature; and with which the four only possible methods of directly inductive investigation by observation and experiment, are for the most part, as will appear presently, quite unequal to cope. The instrument of Deduction alone is adequate to unravel the complexities proceeding from this source; and the four methods have little more in their power than to supply premises for, and a verification of, our deductions.
Β§ 4. A concurrence of two or more causes, not separately producing each its own effect, but interfering with or modifying the effects of one another, takes place, as has already been explained, in two different ways. In the one, which is exemplified by the joint operation of different forces in mechanics, the separate effects of all the causes continue to be produced, but are compounded with one another, and disappear in one total. In the other, illustrated by the case of chemical action, the separate effects cease entirely, and are succeeded by phenomena altogether different, and governed by different laws.
Of these cases the former is by far the more frequent, and this case it is which, for the most part, eludes the grasp of our experimental methods. The other and exceptional case is essentially amenable to them. When the laws of the original agents cease entirely, and a phenomenon makes its appearance, which, with reference to those laws, is quite heterogeneous; when, for example, two gaseous substances, hydrogen and oxygen, on being brought together, throw off their peculiar properties, and produce the substance called water; in such cases the new fact may be subjected to experimental inquiry, like any other phenomenon; and the elements which are said to compose it may be considered as the mere agents of its production; the conditions on which it depends, the facts which make up its cause.
The effects of the new phenomenon, the properties of water, for instance, are as easily found by experiment as the effects of any other cause. But to discover the cause of it, that is, the particular conjunction of agents from which it results, is often difficult enough. In the first place, the origin and actual production of the phenomenon are most frequently inaccessible to our observation. If we could not have learned the composition of water until we found instances in which it was actually produced from oxygen and hydrogen, we should have been forced to wait until the casual thought struck some one of passing an electric spark through a mixture of the two gases, or inserting a lighted taper into it, merely to try what would happen. Besides, many substances, though they can be analysed, cannot by any known artificial means be recompounded. Further, even if we could have ascertained, by the Method of Agreement, that oxygen and hydrogen were both present when water is produced, no experimentation on oxygen and hydrogen separately, no knowledge of their laws, could have enabled us deductively to infer that they would produce water. We require a specific experiment on the two combined.
Under these difficulties, we should generally have been indebted for our knowledge of the causes of this class of effects, not to any inquiry directed specifically towards that end, but either to accident, or to the gradual progress of experimentation on the different combinations of which the producing agents are susceptible; if it were not for a peculiarity belonging to effects of this description, that they often, under some particular combination of circumstances, reproduce their causes. If water results from the juxtaposition of hydrogen and oxygen whenever this can be made sufficiently close and intimate, so, on the other hand, if water itself be placed in certain situations, hydrogen and oxygen are reproduced from it: an abrupt termination is put to the new laws, and the agents reappear separately with their own properties as at first. What is called chemical analysis is the process of searching for the causes of a phenomenon among its effects, or rather among the effects produced by the action of some other causes upon it.
Lavoisier, by heating mercury to a high temperature in a close vessel containing air, found that the mercury increased in weight, and became what was then called red precipitate, while the air, on being examined after the experiment, proved to have lost weight, and to have become incapable of supporting life or combustion. When red precipitate was exposed to a still greater heat, it became mercury again, and gave off a gas which did support life and flame. Thus the agents which by their combination produced red precipitate, namely the mercury and the gas, reappear as effects resulting from that precipitate when acted upon by heat. So, if we decompose water by means of iron filings, we produce two effects, rust and hydrogen: now rust is already known by experiments upon the component substances, to be an effect of the union of iron and oxygen: the iron we ourselves supplied, but the oxygen must have been produced from the water. The result therefore is that water has disappeared, and hydrogen and oxygen have appeared in its stead: or in other words, the original laws of these gaseous agents, which had been suspended by the superinduction of the new laws called the properties of water, have again started into existence, and the causes of water are found among its effects.
Where two phenomena, between the laws or properties of which considered in themselves no connexion can be traced, are thus reciprocally cause and effect, each capable in its turn of being produced from the other, and each, when it produces the other, ceasing itself to exist (as water is produced from oxygen and hydrogen, and oxygen and hydrogen are reproduced from water); this causation of the two phenomena by one another, each being generated by the other's destruction, is properly transformation. The idea of chemical composition is an idea of transformation, but of a transformation which is incomplete; since we consider the oxygen and hydrogen to be present in the water as oxygen and hydrogen, and capable of being discovered in it if our senses were sufficiently keen: a supposition (for it is no more) grounded solely on the fact, that the weight of the water is the sum of the separate weights of the two ingredients. If there had not been this exception to the entire disappearance, in the compound, of the laws of the separate ingredients; if the combined agents had not, in this one particular of weight, preserved their own laws, and produced a joint result equal to the sum of their separate results; we should never, probably, have had the notion now implied by the words chemical composition: and, in the facts of water produced from hydrogen and oxygen, and hydrogen and oxygen produced from water, as the transformation would have been complete, we should have seen only a transformation.
The very promising generalization now commonly known as the Conservation or Persistence of Force, bears a close resemblance to what the conception of chemical composition would become, if divested of the one circumstance which now distinguishes it from simple transformation. It has long been known that heat is capable of producing electricity, and electricity heat; that mechanical motion in numerous cases produces and is produced by them both; and so of all other physical forces. It has of late become the general belief of scientific inquirers that mechanical force, electricity, magnetism, heat, light, and chemical action (to which has subsequently been added vital action) are not so much causes of one another as convertible into one another; and they are now generally spoken of as forms of one and the same force, varying only in its manifestations. This doctrine may be admitted, without by any means implying that Force is a real entity, a Thing in itself, distinct from all its phenomenal manifestations to our organs. Supposing the doctrine true, the several kinds of phenomena which it identifies in respect of their origin would nevertheless remain different facts; facts which would be causes of one anotherβreciprocally causes and effects, which is the first element in the form of causation properly called transformation. What the doctrine contains more than this, is, that in each of these cases of reciprocal causation, the causes are reproduced without alteration in quantity. This is what takes place in the transformations of matter: when water has been converted into hydrogen and oxygen, these can be reconverted into precisely the same quantity of water from which they were produced. To establish a corresponding law in regard to Force, it has to be proved that heat is capable of being converted into electricity, electricity into chemical action, chemical action into mechanical force, and mechanical force back again into the exact quantity of heat which was originally expended; and so through all the interchanges. Were this proved, it would establish what constitutes transformation, as distinguished from the simple fact of reciprocal causation. The fact in issue is simply the quantitative equivalence of all these natural agencies; whereby a given quantity of any one is convertible into, and interchangeable with, a given, and always the same, quantity of any other: this, no less, but also no more. It cannot yet be said that the law has been fully proved of any case, except that of interchange between heat and mechanical motion. It does seem to be ascertained, not only that these two are convertible into each other, but that after any number of conversions the original quantities reappear without addition or diminution, like the original quantities of hydrogen and oxygen after passing through the condition of water. If the same thing comes to be proved true of all the other forces, in relation to these two and to one another, the law of Conservation will be established; and it will be a legitimate mode of expressing the fact, to speak of Force, as we already speak of Matter, as indestructible. But Force will not the less remain, to the philosopher, a mere abstraction of the mind. All that will have been proved is, that in the phenomena of Nature, nothing actually ceases without generating a calculable, and always the same, quantity of some other natural phenomenon, which again, when it ceases, will in its turn either generate a calculable, and always the same, quantity of some third phenomenon, or reproduce the original quantity of the first.
In these cases, where the heteropathic effect (as we called it in a former chapter)[44] is but a transformation of its cause, or in other words, where the effect and its cause are reciprocally such, and mutually convertible into each other; the problem of finding the cause resolves itself into the far easier one of finding an effect, which is the kind of inquiry that admits of being prosecuted by direct experiment. But there are other cases of heteropathic effects to which this mode of investigation is not applicable. Take, for instance, the heteropathic laws of mind; that portion of the phenomena of our mental nature which are analogous to chemical rather than to dynamical phenomena; as when a complex passion is formed by the coalition of several elementary impulses, or a complex emotion by several simple pleasures or pains, of which
Comments (0)