American library books Β» Philosophy Β» A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πŸ“•

Read book online Β«A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πŸ“•Β».   Author   -   John Stuart Mill



1 ... 90 91 92 93 94 95 96 97 98 ... 106
Go to page:
in which it may be expected again to occur. The conditions of a phenomenon which arises from a composition of causes, may be investigated either deductively or experimentally.

The case, it is evident, is naturally susceptible of the deductive mode of investigation. The law of an effect of this description is a result of the laws of the separate causes on the combination of which it depends, and is therefore in itself capable of being deduced from these laws. This is called the method Γ  priori. The other, or Γ  posteriori method, professes to proceed according to the canons of experimental inquiry. Considering the whole assemblage of concurrent causes which produced the phenomenon, as one single cause, it attempts to ascertain the cause in the ordinary manner, by a comparison of instances. This second method subdivides itself into two different varieties. If it merely collates instances of the effect, it is a method of pure observation. If it operates upon the causes, and tries different combinations of them, in hopes of ultimately hitting the precise combination which will produce the given total effect, it is a method of experiment.

In order more completely to clear up the nature of each of these three methods, and determine which of them deserves the preference, it will be expedient (conformably to a favourite maxim of Lord Chancellor Eldon, to which, though it has often incurred philosophical ridicule, a deeper philosophy will not refuse its sanction) to "clothe them in circumstances." We shall select for this purpose a case which as yet furnishes no very brilliant example of the success of any of the three methods, but which is all the more suited to illustrate the difficulties inherent in them. Let the subject of inquiry be, the conditions of health and disease in the human body; or (for greater simplicity) the conditions of recovery from a given disease; and in order to narrow the question still more, let it be limited, in the first instance, to this one inquiry: Is, or is not some particular medicament (mercury, for instance) a remedy for the given disease.

Now, the deductive method would set out from known properties of mercury, and known laws of the human body, and by reasoning from these, would attempt to discover whether mercury will act upon the body when in the morbid condition supposed, in such a manner as to restore health. The experimental method would simply administer mercury in as many cases as possible, noting the age, sex, temperament, and other peculiarities of bodily constitution, the particular form or variety of the disease, the particular stage of its progress, &c., remarking in which of these cases it produced a salutary effect, and with what circumstances it was on those occasions combined. The method of simple observation would compare instances of recovery, to find whether they agreed in having been preceded by the administration of mercury; or would compare instances of recovery with instances of failure, to find cases which, agreeing in all other respects, differed only in the fact that mercury had been administered, or that it had not.

Β§ 7. That the last of these three modes of investigation is applicable to the case, no one has ever seriously contended. No conclusions of value on a subject of such intricacy, ever were obtained in that way. The utmost that could result would be a vague general impression for or against the efficacy of mercury, of no avail for guidance unless confirmed by one of the other two methods. Not that the results, which this method strives to obtain, would not be of the utmost possible value if they could be obtained. If all the cases of recovery which presented themselves, in an examination extending to a great number of instances, were cases in which mercury had been administered, we might generalize with confidence from this experience, and should have obtained a conclusion of real value. But no such basis for generalization can we, in a case of this description, hope to obtain. The reason is that which we have spoken of as constituting the characteristic imperfection of the Method of Agreement; Plurality of Causes. Supposing even that mercury does tend to cure the disease, so many other causes, both natural and artificial, also tend to cure it, that there are sure to be abundant instances of recovery in which mercury has not been administered: unless, indeed, the practice be to administer it in all cases; on which supposition it will equally be found in the cases of failure.

When an effect results from the union of many causes, the share which each has in the determination of the effect cannot in general be great: and the effect is not likely, even in its presence or absence, still less in its variations, to follow, even approximately, any one of the causes. Recovery from a disease is an event to which, in every case, many influences must concur. Mercury may be one such influence; but from the very fact that there are many other such, it will necessarily happen that although mercury is administered, the patient, for want of other concurring influences, will often not recover, and that he often will recover when it is not administered, the other favourable influences being sufficiently powerful without it. Neither, therefore, will the instances of recovery agree in the administration of mercury, nor will the instances of failure agree in its non-administration. It is much if, by multiplied and accurate returns from hospitals and the like, we can collect that there are rather more recoveries and rather fewer failures when mercury is administered than when it is not; a result of very secondary value even as a guide to practice, and almost worthless as a contribution to the theory of the subject.

Β§ 8. The inapplicability of the method of simple observation to ascertain the conditions of effects dependent on many concurring causes, being thus recognised; we shall next inquire whether any greater benefit can be expected from the other branch of the Γ  posteriori method, that which proceeds by directly trying different combinations of causes, either artificially produced or found in nature, and taking notice what is their effect: as, for example, by actually trying the effect of mercury, in as many different circumstances as possible. This method differs from the one which we have just examined, in turning our attention directly to the causes or agents, instead of turning it to the effect, recovery from the disease. And since, as a general rule, the effects of causes are far more accessible to our study than the causes of effects, it is natural to think that this method has a much better chance of proving successful than the former.

The method now under consideration is called the Empirical Method; and in order to estimate it fairly, we must suppose it to be completely, not incompletely, empirical. We must exclude from it everything which partakes of the nature not of an experimental but of a deductive operation. If for instance we try experiments with mercury upon a person in health, in order to ascertain the general laws of its action upon the human body, and then reason from these laws to determine how it will act upon persons affected with a particular disease, this may be a really effectual method, but this is deduction. The experimental method does not derive the law of a complex case from the simpler laws which conspire to produce it, but makes its experiments directly upon the complex case. We must make entire abstraction of all knowledge of the simpler tendencies, the modi operandi of mercury in detail. Our experimentation must aim at obtaining a direct answer to the specific question, Does or does not mercury tend to cure the particular disease?

Let us see, therefore, how far the case admits of the observance of those rules of experimentation, which it is found necessary to observe in other cases. When we devise an experiment to ascertain the effect of a given agent, there are certain precautions which we never, if we can help it, omit. In the first place, we introduce the agent into the midst of a set of circumstances which we have exactly ascertained. It needs hardly be remarked how far this condition is from being realized in any case connected with the phenomena of life; how far we are from knowing what are all the circumstances which pre-exist in any instance in which mercury is administered to a living being. This difficulty, however, though insuperable in most cases, may not be so in all; there are sometimes concurrences of many causes, in which we yet know accurately what the causes are. Moreover, the difficulty may be attenuated by sufficient multiplication of experiments, in circumstances rendering it improbable that any of the unknown causes should exist in them all. But when we have got clear of this obstacle, we encounter another still more serious. In other cases, when we intend to try an experiment, we do not reckon it enough that there be no circumstance in the case the presence of which is unknown to us. We require also that none of the circumstances which we do know, shall have effects susceptible of being confounded with those of the agent whose properties we wish to study. We take the utmost pains to exclude all causes capable of composition with the given cause; or if forced to let in any such causes, we take care to make them such that we can compute and allow for their influence, so that the effect of the given cause may, after the subduction of those other effects, be apparent as a residual phenomenon.

These precautions are inapplicable to such cases as we are now considering. The mercury of our experiment being tried with an unknown multitude (or even let it be a known multitude) of other influencing circumstances, the mere fact of their being influencing circumstances implies that they disguise the effect of the mercury, and preclude us from knowing whether it has any effect or not. Unless we already knew what and how much is owing to every other circumstance, (that is, unless we suppose the very problem solved which we are considering the means of solving,) we cannot tell that those other circumstances may not have produced the whole of the effect, independently or even in spite of the mercury. The Method of Difference, in the ordinary mode of its use, namely by comparing the state of things following the experiment with the state which preceded it, is thus, in the case of intermixture of effects, entirely unavailing; because other causes than that whose effect we are seeking to determine, have been operating during the transition. As for the other mode of employing the Method of Difference, namely by comparing, not the same case at two different periods, but different cases, this in the present instance is quite chimerical. In phenomena so complicated it is questionable if two cases, similar in all respects but one, ever occurred; and were they to occur, we could not possibly know that they were so exactly similar.

Anything like a scientific use of the method of experiment, in these complicated cases, is therefore out of the question. We can in the most favourable cases only discover, by a succession of trials, that a certain cause is very often followed by a certain effect. For, in one of these conjunct effects, the portion which is determined by any one of the influencing agents, is generally, as we before remarked, but small; and it must be a more potent cause than most, if even the tendency which it really exerts is not thwarted by other tendencies in nearly as many cases as it is fulfilled.

If so little can be done by the experimental method to determine the conditions of an effect of

1 ... 90 91 92 93 94 95 96 97 98 ... 106
Go to page:

Free e-book: Β«A System of Logic: Ratiocinative and Inductive by John Stuart Mill (popular e readers .txt) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment