American library books Β» Science Β» General Science by Bertha May Clark (best historical fiction books of all time TXT) πŸ“•

Read book online Β«General Science by Bertha May Clark (best historical fiction books of all time TXT) πŸ“•Β».   Author   -   Bertha May Clark



1 ... 27 28 29 30 31 32 33 34 35 ... 54
Go to page:
may be represented by vinegar, sulphuric acid, and oxalic acid; and the second, by ammonia, lye, and limewater.

202. Acids. All of us know that vinegar and lemon juice have a sour taste, and it is easy to show that most acids are characterized by a sour taste. If a clean glass rod is dipped into very dilute acid, such as acetic, sulphuric, or nitric acid, and then lightly touched to the tongue, it will taste sour. But the best test of an acid is by sight rather than by taste, because it has been found that an acid is able to discolor a plant substance called litmus. If paper is soaked in a litmus solution until it acquires the characteristic blue hue of the plant substance, and is then dried thoroughly, it can be used to detect acids, because if it comes in contact with even the minutest trace of acid, it loses its blue color and assumes a red tint. Hence, in order to detect the presence of acid in a substance, one has merely to put some of the substance on blue litmus paper, and note whether or not the latter changes color. This test shows that many of our common foods contain some acid; for example, fruit, buttermilk, sour bread, and vinegar.

The damage which can be done by strong acids is well known; if a jar of sulphuric acid is overturned, and some of it falls on the skin, it eats its way into the flesh and leaves an ugly sore; if it falls on carpet or coat, it eats its way into the material and leaves an unsightly hole. The evil results of an accident with acid can be lessened if we know just what to do and do it quickly, but for this we must have a knowledge of bases, the second group of chemicals.

203. Bases. Substances belonging to this group usually have a bitter taste and a slimy, soapy feeling. For our present purposes, the most important characteristic of a base is that it will neutralize an acid and in some measure hinder the damage effected by the former. If, as soon as an acid has been spilled on cloth, a base, such as ammonia, is applied to the affected region, but little harm will be done. In your laboratory experiments you may be unfortunate enough to spill acid on your body or clothing; if so, quickly apply ammonia. If you delay, the acid does its work, and there is no remedy. If soda (a base) touches black material, it discolors it and leaves an ugly brown spot; but the application of a little acid, such as vinegar or lemon juice, will often restore the original color and counteract the bad effects of the base. Limewater prescribed by physicians in cases of illness is a well-known base. This liquid neutralizes the too abundant acids present in a weak system and so quiets and tones the stomach.

The interaction of acids and bases may be observed in another way. If blue litmus paper is put into an acid solution, its color changes to red; if now the red litmus paper is dipped into a base solution, caustic soda, for example, its original color is partially restored. What the acid does, the base undoes, either wholly or in part. Bases always turn red litmus paper blue.

Bases, like acids, are good or bad according to their use; if they come in contact with cloth, they eat or discolor it, unless neutralized by an acid. But this property of bases, harmful in one way, is put to advantage in the home, where grease is removed from drainpipe and sink by the application of lye, a strong base. If the lye is too concentrated, it will not only eat the grease, but will corrode the metal piping; it is easy, however, to dilute base solutions to such a degree that they will not affect piping, but will remove grease. Dilute ammonia is used in almost every home and is an indispensable domestic servant; diluted sufficiently, it is invaluable in the washing of delicate fabrics and in the removing of stains, and in a more concentrated form it is helpful as a smelling salt in cases of fainting.

Some concentrated bases are so powerful in their action on grease, cloth, and metal that they have received the designation caustic, and are ordinarily known as caustic soda, caustic potash (lye), and caustic lime. These more active bases are generally called alkalies in distinction from the less active ones.

204. Neutral Substances. To any acid solution add gradually a small quantity of a base, and test the mixture from time to time with blue litmus paper; at first the paper will turn red quickly, but as more and more of the base is added to the solution, it has less and less effect on the blue litmus paper, and finally a point is reached when a fresh strip of blue paper will not be affected. Such a result indicates infallibly the absence of any acid qualities in the solution. If now red litmus paper is tested in the same solution, its color also will remain unchanged; such a result indicates infallibly the absence of any basic quality. The solution has the characteristic property of neither acid nor base and is said to be neutral.

If to the neutral solution an extra portion of base is added, so that there is an excess of base over acid, the neutralization is overbalanced and the red paper turns blue. If to the neutral solution an extra portion of acid is added, so that there is an excess of acid over base, the neutralization is overbalanced in the opposite direction, and the solution acquires acid characteristics.

Most acids and bases will eat and corrode and discolor, while neutral substances will not; it is for this reason that soap, a slightly alkaline substance, is the safest cleansing agent for laundry, bath, and general work. Good soaps, being carefully made, are so nearly neutral that they will not fade the color out of clothing; the cheap soaps are less carefully prepared and are apt to have a strong excess of the base ingredient; such soaps are not safe for delicate work.

205. Soap. If we gather together scrapings of lard, butter, bits of tallow from burned-out candles, scraps of waste fat, or any other sort of grease, and pour a strong solution of lye over the mass, a soft soapy substance is formed. In colonial times, every family made its own supply of soap, utilizing, for that purpose, household scraps often regarded by the housekeeper of to-day as worthless. Grease and fat were boiled with water and hardwood ashes, which are rich in lye, and from the mixture came the soft soap used by our ancestors. In practice, the wood ashes were boiled in water, which was then strained off, and the resulting filtrate, or lye, was mixed with the fats for soap making.

Most fats contain a substance of an acid nature, and are decomposed by the action of bases such as caustic soda and caustic potash. The acid component of the grease partially neutralizes the base, and a new substance is formed, namely, soap.

With the advance of civilization the labor of soap making passed from the home to the factory, very much as bread making has done in our own day. Different varieties of soaps appeared, of which the hard soap was the most popular, owing to the ease with which it could be transported. Within the last few years liquid soaps have come into favor, especially in schools, railroad stations, and other public places, where a cake of soap would be handled by many persons. By means of a simple device (Fig. 157), the soap escapes from a receptacle when needed. The mass of the soap does not come in contact with the skin, and hence the spread of contagious skin diseases is lessened.

FIG. 157.β€”Liquid soap container.FIG. 157.β€”Liquid soap container.

Commercial soaps are made from a great variety of substances, such as tallow, lard, castor oil, coconut oil, olive oil, etc.; or in cheaper soaps, from rosin, cottonseed oil, and waste grease. The fats which go to waste in our garbage could be made a source of income, not only to the housewife, but to the city. In Columbus, Ohio, garbage is used as a source of revenue; the grease from the garbage being sold for soap making, and the tankage (Section 188) for fertilizer.

206. Why Soap Cleans. The natural oil of the skin catches and retains dust and dirt, and makes a greasy film over the body. This cannot be removed by water alone, but if soap is used and a generous lather is applied to the skin, the dirt is "cut" and passes from the body into the water. Soap affects a grease film and water very much as the white of an egg affects oil and water. These two liquids alone do not mix, the oil remaining separate on the surface of the water; but if a small quantity of white of egg is added, an emulsion is formed, the oil separating into minute droplets which spread through the water. In the same way, soap acts on a grease film, separating it into minute droplets which leave the skin and spread through the water, carrying with them the dust and dirt particles. The warmer the water, the better will be the emulsion, and hence the more effective the removal of dirt and grease. This explanation holds true for the removal of grease from any surface, whether of the body, clothing, furniture, or dishes.

207. Washing Powders. Sometimes soap refuses to form a lather and instead cakes and floats as a scum on the top of the water; this is not the fault of the soap but of the water. As water seeps through the soil or flows over the land, it absorbs and retains various soil constituents which modify its character and, in some cases, render it almost useless for household purposes. Most of us are familiar with the rain barrel of the country house, and know that the housewife prefers rain water for laundry and general work. Rain water, coming as it does from the clouds, is free from the chemicals gathered by ground water, and is hence practically pure. While foreign substances do not necessarily injure water for drinking purposes (Section 69), they are often of such a nature as to prevent soap from forming an emulsion, and hence from doing its work. Under such circumstances the water is said to be hard, and soap used with it is wasted. Even if water is only moderately hard, much soap is lost. The substances which make water hard are calcium and magnesium salts. When soap is put into water containing one or both of these, it combines with the salts to form sticky insoluble scum. It is therefore not free to form an emulsion and to remove grease. As a cleansing agent it is valueless. The average city supply contains so little hardness that it is satisfactory for toilet purposes; but in the laundry, where there is need for the full effect of the soap, and where the slightest loss would aggregate a great deal in the course of time, something must be done to counteract the hardness. The addition of soda, or sodium carbonate to the water will usually produce the desired effect. Washing soda combines with calcium and magnesium and prevents them from uniting with soap. The soap is thus free to form an emulsion, just as in ordinary water. Washing powders are sometimes used instead of washing soda. Most washing powders contain, in addition to a softening agent, some alkali, and hence a double good is obtained from their use; they not only soften the water and allow the soap to form an emulsion,

1 ... 27 28 29 30 31 32 33 34 35 ... 54
Go to page:

Free e-book: Β«General Science by Bertha May Clark (best historical fiction books of all time TXT) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment