American library books Β» Science Β» The Story of the Heavens by Sir Robert Stawell Ball (fantasy books to read .txt) πŸ“•

Read book online Β«The Story of the Heavens by Sir Robert Stawell Ball (fantasy books to read .txt) πŸ“•Β».   Author   -   Sir Robert Stawell Ball



1 ... 40 41 42 43 44 45 46 47 48 ... 97
Go to page:
sun for its brilliancy. The satellites supply another interesting proof of this truth. One of these bodies sometimes enters the shadow of Jupiter and lo! the little body vanishes. It does so because Jupiter has cut off the supply of sunlight which previously rendered the satellite visible. But the planet is not himself able to offer the satellite any light in compensation for the sunlight which he has intercepted.[22]

Enough, however, has been demonstrated to enable us to pronounce on the question as to whether the globe of Jupiter can be inhabited by living creatures resembling those on this earth. Obviously this cannot be so. The internal heat and the fearful tempests seem to preclude the possibility of organic life on the great planet, even were there not other arguments tending to the same conclusion. It may, however, be contended, with perhaps some plausibility, that Jupiter has in the distant future the prospect of a glorious career as the residence of organic life. The time will assuredly come when the internal heat must decline, when the clouds will gradually condense into oceans. On the surface dry land may then appear, and Jupiter be rendered habitable.

From this sketch of the planet itself we now turn to the interesting and beautiful system of five satellites by which Jupiter is attended. We have, indeed, already found it necessary to allude more than once to these little bodies, but not to such an extent as to interfere with the more formal treatment which they are now to receive.

The discovery of the four chief satellites may be regarded as an important epoch in the history of astronomy. They are objects situated in a remarkable manner on the border-line which divides the objects visible to the unaided eye from those which require telescopic aid. It has been frequently asserted that these objects have been seen with the unaided eye; but without entering into any controversy on the matter, it is sufficient to recite the well-known fact that, although Jupiter had been a familiar object for countless centuries, yet the sharpest eyes under the clearest skies never discovered the satellites until Galileo turned the newly invented telescope upon them. This tube was no doubt a very feeble instrument, but very little power suffices to show objects so dose to the limit of visibility.

The view of the planet and its elaborate system of satellites as shown in a telescope of moderate power, is represented in Fig. 61. We here see the great globe, and nearly in a line parsing through its centre lie four small objects, three on one side and one on the other. These little bodies resemble stars, but they can be distinguished therefrom by their ceaseless movements around the planet, which they never fail to accompany during his entire circuit of the heavens. There is no more pleasing spectacle for the student than to follow with his telescope the movements of this beautiful system.

In Fig. 62 we have represented some of the various phenomena which the satellites present. The long black shadow is that produced by the interposition of Jupiter in the path of the sun's rays. In consequence of the great distance of the sun this shadow will extend, in the form of a very elongated cone, to a distance far beyond the orbit of the outer satellite. The second satellite is immersed in this shadow, and consequently eclipsed. The eclipse of a satellite must not be attributed to the intervention of the body of Jupiter between the satellite and the earth. Such an occurrence is called an occultation, and the third satellite is shown in this condition. The second and the third satellites are thus alike invisible, but the cause of the invisibility is quite different in the two cases. The eclipse is much the more striking phenomenon of the two, because the satellite, at the moment it plunges into the darkness, may be still at some apparent distance from the edge of the planet, and is thus seen up to the moment of the eclipse. In an occultation the satellite in passing behind the planet is, at the time of disappearance, close to the planet's bright edge, and the extinction of the light from the small body cannot be observed with the same impressiveness as the occurrence of an eclipse.

A satellite also assumes another remarkable situation when in the course of transit over the face of the planet. The satellite itself is not always very easy to see in such circumstances, but the beautiful shadow which it casts forms a sharp black spot on the brilliant orb: the satellite will, indeed, frequently cast a visible shadow when it passes between the planet and the sun, even though it be not actually at the moment in front of the planet, as it is seen from the earth.

The periods in which the four principal moons of Jupiter revolve around their primary are respectively, 1 day 18 hrs. 27 min. 34 secs. for the first; 3 days 13 hrs. 13 min. 42 secs., for the second; 7 days 3 hrs. 42 min. 33 secs, for the third; and 16 days 16 hrs. 32 min. 11 secs. for the fourth. We thus observe that the periods of Jupiter's satellites are decidedly briefer than that of our moon. Even the satellite most distant from the great planet requires for each revolution less than two-thirds of an ordinary lunar month. The innermost of these bodies, revolving as it does in less than two days, presents a striking series of ceaseless and rapid changes, and it becomes eclipsed during every revolution. The distance from the centre of Jupiter to the orbit of the innermost of these four attendants is a quarter of a million miles, while the radius of the outermost is a little more than a million miles. The second of the satellites proceeding outwards from the planet is almost the same size as our moon; the other three bodies are larger; the third being the greatest of all (about 3,560 miles in diameter). Owing to the minuteness of the satellites as seen from the earth, it is extremely difficult to perceive any markings on their surfaces, but the few observations made seem to indicate that the satellites (like our moon) always turn the same face towards their primary. Professor Barnard has, with the great Lick refractor, seen a white equatorial belt on the first satellite, while its poles were very dark. Mr. Douglass, observing with Mr. Lowell's great refractor, has also reported certain streaky markings on the third satellite.

A very interesting astronomical discovery was that made by Professor E.E. Barnard in 1892. He detected with the 36-inch Lick refractor an extremely minute fifth satellite to Jupiter at a distance of 112,400 miles, and revolving in a period of 11 hrs. 57 min. 22.6 secs. It can only be seen with the most powerful telescopes.

The eclipses of Jupiter's satellites had been observed for many years, and the times of their occurrence had been recorded. At length it was perceived that a certain order reigned among the eclipses of these bodies, as among all other astronomical phenomena. When once the laws according to which the eclipses recurred had been perceived, the usual consequence followed. It became possible to foretell the time at which the eclipses would occur in future. Predictions were accordingly made, and it was found that they were approximately verified. Further improvements in the calculations were then perfected, and it was sought to predict the times with still greater accuracy. But when it came to naming the actual minute at which the eclipse should occur, expectations were not always realised. Sometimes the eclipse was five or ten minutes too soon. Sometimes it was five or ten minutes too late. Discrepancies of this kind always demand attention. It is, indeed, by the right use of them that discoveries are often made, and one of the most interesting examples is that now before us.

The irregularity in the occurrence of the eclipses was at length perceived to observe certain rules. It was noticed that when the earth was near to Jupiter the eclipse generally occurred before the predicted time; while when the earth happened to be at the side of its orbit away from Jupiter, the eclipse occurred after the predicted time. Once this was proved, the great discovery was quickly made by Roemer, a Danish astronomer, in 1675. When the satellite enters the shadow, its light gradually decreases until it disappears. It is the last ray of light from the eclipsed satellite that gives the time of the eclipse; but that ray of light has to travel from the satellite to the earth, and enter our telescope, before we can note the occurrence. It used to be thought that light travelled instantaneously, so that the moment the eclipse occurred was assumed to be the moment when the eclipse was seen in the telescope. This was now perceived to be incorrect. It was found that light took time to travel. When the earth was comparatively near Jupiter the light had only a short journey, the intelligence of the eclipse arrived quickly, and the eclipse was seen sooner than the calculations indicated. When the earth occupied a position far from Jupiter, the light had a longer journey, and took more than the average time, so that the eclipse was later than the prediction. This simple explanation removed the difficulty attending the predictions of the eclipses of the satellites. But the discovery had a significance far more momentous. We learned from it that light had a measurable velocity, which, according to recent researches, amounts to 186,300 miles per second.

One of the most celebrated attempts to ascertain the distance of the sun is derived from a combination of experiments on the velocity of light with astronomical measurements. This is a method of considerable refinement and interest, and although it does not so fulfil all the necessary conditions as to make it perfectly satisfactory, yet it is impossible to avoid some reference to it here. Notwithstanding that the velocity of light is so stupendous, it has been found possible to measure that velocity by actual trial. This is one of the most delicate experimental researches that have ever been undertaken. If it be difficult to measure the speed of a rifle bullet, what shall we say of the speed of a ray of light, which is nearly a million times as great? How shall we devise an apparatus subtle enough to determine the velocity which would girdle the earth at the equator no less than seven times in a single second of time? Ordinary contrivances for measurement are here futile; we have to devise an instrument of a wholly different character.

In the attempt to discover the speed of a moving body we first mark out a certain distance, and then measure the time which the body requires to traverse that distance. We determine the velocity of a railway train by the time it takes to pass from one mile-post to the next. We learn the speed of a rifle bullet by an ingenious contrivance really founded on the same principle. The greater the velocity, the more desirable is it that the distance traversed during the experiment shall be as large as possible. In dealing with the measurement of the velocity of light, we therefore choose for our measured distance the greatest length that may be convenient. It is, however, necessary that the two ends of the line shall be visible from each other. A hill a mile or two away will form a suitable site for the distant station, and the distance of the selected point on the hill from the observer must be carefully measured.

The problem is now easily stated. A ray of light is to be sent from the observer to the distant station, and the time
1 ... 40 41 42 43 44 45 46 47 48 ... 97
Go to page:

Free e-book: Β«The Story of the Heavens by Sir Robert Stawell Ball (fantasy books to read .txt) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment