American library books Β» Science Β» The Story of the Heavens by Sir Robert Stawell Ball (fantasy books to read .txt) πŸ“•

Read book online Β«The Story of the Heavens by Sir Robert Stawell Ball (fantasy books to read .txt) πŸ“•Β».   Author   -   Sir Robert Stawell Ball



1 ... 83 84 85 86 87 88 89 90 91 ... 97
Go to page:
maximum. Each one will be about twenty seconds from its average place; but in every case the imperative law will be obeyed, that the displacement of the star from its mean place lies towards the apex of the earth's way. We have thus given two distinct descriptions of the phenomenon of aberration. In the first we find it convenient to speak of a star as describing a minute circular path; in the other we have regarded aberration as merely amounting to a derangement of the star from its mean place in accordance with specified laws. These descriptions are not inconsistent: they are, in fact, geometrically equivalent; but the latter is rather the more perfect, inasmuch as it assigns completely the direction and extent of the derangement caused by aberration in any particular star at any particular moment.

The question has now been narrowed to a very definite form. What is it which makes each star seem to close in towards the point towards which the earth is travelling? The answer will be found when we make a minute enquiry into the circumstances in which we view a star in the telescope.

The beam of rays from a star falls on the object-glass of a telescope; those rays are parallel, and after they pass through the object-glass they converge to a focus near the eye end of the instrument. Let us first suppose that the telescope is at rest; then if the telescope be pointed directly towards the star, the rays will converge to a point at the centre of the field of view where a pair of cross wires are placed, whose intersection defines the axis of the telescope. The case will, however, be altered if the telescope be moved after the light has passed through the objective; the rays of light in the interior of the tube will pursue a direct path, as before, and will proceed to a focus at the same precise point as before. As, however, the telescope has moved, it will, of course, have carried with it the pair of cross wires; they will no longer be at the same point as at first, and consequently the image of the star will not now coincide with their intersection.

The movement of the telescope arises from its connection with the earth: for as the earth hurries along at a speed of eighteen miles a second, the telescope is necessarily displaced with this velocity. It might at first be thought, that in the incredibly small fraction of time necessary for light to pass from the object-glass to the eye-piece, the change in the position of the telescope must be too minute to be appreciable. Let us suppose, for instance, that the star is situated near the pole of the ecliptic, then the telescope will be conveyed by the earth's motion in a direction perpendicular to its length. If the tube of the instrument be about twenty feet long, it can be readily demonstrated that during the time the light travels down the tube the movement of the earth will convey the telescope through a distance of about one-fortieth of an inch.[42] This is a quantity very distinctly measurable with the magnifying power of the eye-piece, and hence this derangement of the star's place is very appreciable. It therefore follows that if we wish the star to be shown at the centre of the instrument, the telescope is not to be pointed directly at the star, as it would have to be were the earth at rest, but the telescope must be pointed a little in advance of the star's true position; and as we determine the apparent place of the star by the direction in which the telescope is pointed, it follows that the apparent place of the star is altered by the motion of the earth.

Every circumstance of the change in the star's place admits of complete explanation in this manner. Take, for instance, the small circular path which each star appears to describe. We shall, for simplicity, refer only to a star at the pole of the ecliptic. Suppose that the telescope is pointed truly to the place of the star, then, as we have shown, the image of the star will be at a distance of one-fortieth of an inch from the cross wires. This distance will remain constant, but each night the direction of the star from the cross wires will change, so that in the course of the year it completes a circle, and returns to its original position. We shall not pursue the calculations relative to other stars; suffice it here to say that the movement of the earth has been found adequate to account for the phenomena, and thus the doctrine of the aberration of light is demonstrated.

It remains to allude to one point of the utmost interest and importance. We have seen that the magnitude of the aberration can be measured by astronomical observation. The amount of this aberration depends upon the velocity of light, and on the velocity with which the earth's motion is performed. We can measure the velocity of light by independent measurements, in the manner already explained in Chapter XII. We are thus enabled to calculate what the velocity of the earth must be, for there is only one particular velocity for the earth which, when combined with the measured velocity of light, will give the measured value of aberration. The velocity of the earth being thus ascertained, and the length of the year being known, it is easy to find the circumference of the earth's path, and therefore its radius; that is, the distance from the earth to the sun.

Here is indeed a singular result, and one which shows how profoundly the various phenomena of science are interwoven. We make experiments in our laboratory, and find the velocity of light. We observe the fixed stars, and measure the aberration. We combine these results, and deduce therefrom the distance from the earth to the sun! Although this method of finding the sun's distance is one of very great elegance, and admits of a certain amount of precision, yet it cannot be relied upon as a perfectly unimpeachable method of deducing the great constant. A perfect method must be based on the operations of mere surveying, and ought not to involve recondite physical considerations. We cannot, however, fail to regard the discovery of aberration by Bradley as a most pleasing and beautiful achievement, for it not only greatly improves the calculations of practical astronomy, but links together several physical phenomena of the greatest interest.


CHAPTER XXVI.


THE ASTRONOMICAL SIGNIFICANCE OF HEAT.





Heat and Astronomy--Distribution of Heat--The Presence of Heat in
the Earth--Heat in other Celestial Bodies--Varieties of
Temperature--The Law of Cooling--The Heat of the Sun--Can its
Temperature be Measured?--Radiation connected with the Sun's
Bulk--Can the Sun be Exhausting his Resources?--No marked Change
has occurred--Geological Evidence as to the Changes of the Sun's
Heat Doubtful--The Cooling of the Sun--The Sun cannot be merely an
Incandescent Solid Cooling--Combustion will not Explain the
Matter--Some Heat is obtained from Meteoric Matter, but this is not
Adequate to the Maintenance of the Sun's Heat--The Contraction of a
Heated Globe of Gas--An Apparent Paradox--The Doctrine of
Energy--The Nebular Theory--Evidence in Support of this
Theory--Sidereal Evidence of the Nebular Theory--Herschel's View of
Sidereal Aggregation--The Nebulae do not Exhibit Changes within the
Limits of our Observation.





That a portion of a work on astronomy should bear the title placed at the head of this chapter will perhaps strike some of our readers as unusual, if not actually inappropriate. Is not heat, it may be said, a question merely of experimental physics? and how can it be legitimately introduced into a treatise upon the heavenly bodies and their movements? Whatever weight such objections might have once had need not now be considered. The recent researches on heat have shown not only that heat has important bearings on astronomy, but that it has really been one of the chief agents by which the universe has been moulded into its actual form. At the present time no work on astronomy could be complete without some account of the remarkable connection between the laws of heat and the astronomical consequences which follow from those laws.

In discussing the planetary motions and the laws of Kepler, or in discussing the movements of the moon, the proper motions of the stars, or the revolutions of the binary stars, we proceed on the supposition that the bodies we are dealing with are rigid particles, and the question as to whether these particles are hot or cold does not seem to have any especial bearing. No doubt the ordinary periodic phenomena of our system, such as the revolution of the planets in conformity with Kepler's laws, will be observed for countless ages, whether the planets be hot or cold, or whatever may be the heat of the sun. It must, however, be admitted that the laws of heat introduce certain modifications into the statement of these laws. The effects of heat may not be immediately perceptible, but they exist--they are constantly acting; and in the progress of time they are adequate to effecting the mightiest changes throughout the universe.

Let us briefly recapitulate the circumstances of our system which give to heat its potency. Look first at our earth, which at present seems--on its surface, at all events--to be a body devoid of internal heat; a closer examination will dispel this idea. Have we not the phenomena of volcanoes, of geysers, and of hot springs, which show that in the interior of the earth heat must exist in far greater intensity than we find on the surface? These phenomena are found in widely different regions of the earth. Their origin is, no doubt, involved in a good deal of obscurity, but yet no one can deny that they indicate vast reservoirs of heat. It would indeed seem that heat is to be found everywhere in the deep inner regions of the earth. If we take a thermometer down a deep mine, we find it records a temperature higher than at the surface. The deeper we descend the higher is the temperature; and if the same rate of progress should be maintained through those depths of the earth which we are not able to penetrate, it can be demonstrated that at twenty or thirty miles below the surface the temperature must be as great as that of red-hot iron.

We find in the other celestial bodies abundant evidence of the present or the past existence of heat. Our moon, as we have already mentioned, affords a very striking instance of a body which must once have been very highly heated. The extraordinary volcanoes on its surface place this beyond any doubt. It is equally true that those volcanoes have been silent for ages, so that, whatever may be the interior condition of the moon, the surface has now cooled down. Extending our view further, we see in the great planets Jupiter and Saturn evidence that they are still endowed with a temperature far in excess of that which the earth has retained; while, when we look at our sun, we see a body in a state of brilliant incandescence, and glowing with a fervour to which we cannot approximate in our mightiest furnaces. The various fixed stars are bodies which glow with heat, like our sun; while we have in the nebulae objects the existence of which is hardly intelligible to us, unless we admit that they are possessed of heat.

From this rapid survey of the different bodies in our universe one conclusion is obvious. We may have great doubts as to the actual temperature of any individual body of the system;

1 ... 83 84 85 86 87 88 89 90 91 ... 97
Go to page:

Free e-book: Β«The Story of the Heavens by Sir Robert Stawell Ball (fantasy books to read .txt) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment