Things To Make by Archibald Williams (which ebook reader TXT) π
[Illustration: FIG. 5.--End elevation of joiner's bench.]
Back and Front.--The only operation to be performed on the front piece B and the back G is the notching of them both on the inside faces at the centre to take the ends of the bearer F, which performs the important function of preventing any bending of the top planks. Lay the boards together, top edges and ends level, and mark them at the same time. The square is then used on the faces to give the limits for the notches, which should be 1/4 inch deep and chiselled out carefully.
Draw cross lines with your square 3 inches from each end of both pieces, on the inside, to show where the legs are to be. Bore holes in the boards for the
Read free book Β«Things To Make by Archibald Williams (which ebook reader TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Archibald Williams
- Performer: -
Read book online Β«Things To Make by Archibald Williams (which ebook reader TXT) πΒ». Author - Archibald Williams
[Footnote 1: The reader is referred to an excellent little treatise, entitled "The Slide Valve" (Messrs. Percival Marshall and Co., 26 Poppin's Court, Fleet Street, E.C. Price 6d.), for a full explanation of the scientific principles of the slide valve.]
The Connecting Rod.βThe length of this from centre to centre of the pins on which it works should be established as follows:βSlip over the piston rod a disc of card 1/32 inch thick. Then pass the rod through the gland and assemble the crosshead and fork on its end, and assemble the guides round the crosshead foot. Turn the crank pin full forward, pull the piston rod out as far as it will come, measure the distance between pin centres very carefully, and transfer it to a piece of paper.
The rod consists of a straight central bar and two rectangular halved ends. The ends should be cut out of brass and carefully squared. Through their exact centres drill 1/8-inch holes, and cut the pieces squarely in two across these holes. The sawed faces should be filed down to a good fit and soldered together. Now drill holes of the size of the pins, using what remains of the holes first made to guide the drill. The bolt holes are drilled next, and finally the holes for lubrication and those to take the rods. Then lay the two ends down on the piece of paper, so that their pinholes are centred on the centre marks, and the holes for the rod are turned towards one another. Cut off a piece of steel rod of the proper length and unsolder the ends. The rod pieces must then be assembled on the rod, and with it be centred on the paper and held in position while the parts are soldered together.
OTHER DETAILS.Adjusting the Guides.βPut the connecting rod in place on its pins, and revolve the crank until the guides have taken up that position which allows the crosshead to move freely. Then mark off the holes for the guide holding-down screws, and drill and tap them.
Packings.βThe glands and piston should be packed with asbestos string. Don't be afraid of packing too tightly, as the tendency is for packing to get slacker in use. The rear end of the cylinder should be bevelled off slightly inside, to allow the packed piston to enter easily.
Joints.βThe cylinder head and valve chest joints should be made with stout brown paper soaked in oil or smeared with red lead. All screw holes should be cut cleanly through the paper, and give plenty of room for the screws.
[Illustration: FIG. 66.-Vertical section of force pump driven by engine.]
When making a joint, tighten up the screws in rotation, a little at a time so as not to put undue strain on any screw. Wait an hour or two, and go round with the screw-driver again.
Lubrication.βWhen the engine is first put under steam, lubrication should be very liberal, to assure the parts "settling down" without undue wear.
The Pump.βFig. 65 shows in section the pump, which will be found a useful addition to the engine. (For other details, see Figs. 53 and 54.) Its stroke is only that of the eccentric, and as the water passages and valves are of good size, it will work efficiently at high speed. The method of making it will be obvious from the diagrams, and space will therefore not be devoted to a detailed description. The valve balls should, of course, be of gun-metal or brass, and the seatings must be prepared for them by hammering in a steel ball of the same size.
In practice it is advisable to keep the pump always working, and to regulate the delivery to the boiler by means of a by-pass tap on the feed pipe, through which all or some of the water may be returned direct to the tank.
The tank, which should be of zinc, may conveniently be placed under the engine. If the exhaust steam pipe be made to traverse the tank along or near the bottom, a good deal of what would otherwise be wasted heat will be saved by warming the feed water.
Making a Governor.
[Illustration: FIG. 66.βElevation of governor for horizontal engine.
Above is plan of valve and rod gear.]
It is a great advantage to have the engine automatically governed, so that it may run at a fairly constant speed under varying loads and boiler pressures. In the absence of a governor one has to be constantly working the throttle; with one fitted, the throttle can be opened up full at the start, and the automatic control relied upon to prevent the engine knocking itself to pieces.
The vertical centrifugal apparatus shown in Fig. 66 was made by the writer, and acted very well. The only objection to it is its displacement of the pump from the bed. But a little ingenuity will enable the pump to be driven off the fly wheel end of the crank shaft, or, if the shaft is cut off pretty flush with the pulley, off a pin in the face of the pulley.
Turning to Fig. 66, A is a steel spindle fixed in a base, L, screwed to the bed. B is a brass tube fitting A closely, and resting at the bottom on a 1/4-inch piece of similar tubing pinned to A.
A wooden pulley jammed on B transmits the drive from a belt which passes at its other end round a similar, but slightly larger, pulley on the crank shaft. This pulley is accommodated by moving the eccentric slightly nearer the crank and shortening the fly-wheel side bearing a little.
The piece G, fixed to B by a lock screw, has two slots cut in it to take the upper ends of the weight links DD; and C, which slides up and down B, is similarly slotted for the links EE. Each of the last is made of two similarly shaped plates of thin brass, soldered together for half their length, but separated 3/32 inch at the top to embrace the projections of D. To prevent C revolving relatively to B, a notch is filed in one side of the central hole, to engage with a piece of brass wire soldered on B (shown solid black in the diagram). A spiral steel spring, indicated in section by a number of black dots, presses at the top against the adjustable collar F, and at the bottom against C.
The two weights WW are pieces of brass bar slotted for driving on to DD, which taper gently towards the outer edge.
When the pulley revolves, centrifugal force makes WW fly outwards against the pressure of the spring, and the links EE raise C, which in turn lifts the end of lever M. A single link, N, transmits the motion from a pin on M to the double bell-crank lever O (see Fig. 66) pivoted on a standard, P, attached to the bedplate. The slotted upper ends of P engage with pins on an adjustable block, R, which moves the governing valve V (solid black), working in the tube S through a gland. The higher M is raised the farther back is V moved, and its annular port is gradually pushed more out of line with two ports in the side of the valve tube, thus reducing the flow of steam from the supply pipe to the cylinder connection on the other side of the tube. This connection, by-the-bye, acts as fulcrum for lever M, which is made in two parts, held together by screws, to render detachment easy.
The closer the fit that V makes with S the more effective will the governing be. The gland at the end of S was taken from an old cylinder cover.
Regulation of the speed may be effected either
(1) by driving the governor faster or slower relatively to the speed of the crank shaft;
(2) by altering the position of W on D;
(3) by altering the compression of the spring by shifting F;
(4) by a combination of two or more of the above.
Generally speaking, (3) is to be preferred, as the simplest.
The belt may be made out of a bootlace or fairly stout circular elastic. In either case the ends should be chamfered off to form a smooth joint, which may be wrapped externally with thread.
FINAL HINTS.All parts which have to be fitted together should have matching marks made on them with the punch. To take the parts of the valve chest as an example. As we have seen, these should be soldered together, finished off outside, and drilled. Before separating them make, say, two punch marks on what will be the upper edge of the valve plate near the end, and two similar marks on the chest as near the first as they can conveniently be. In like manner mark the chest cover and an adjacent part of the chest with three marks. It is utterly impossible to reassemble the parts incorrectly after separation if the marks are matched. Marking is of greatest importance where one piece is held up to another by a number of screws. If it is omitted in such a case, you may have a lot of trouble in matching the holes afterwards.
Jacket the cylinder with wood or asbestos, covered in neatly with sheet brass, to minimize condensation. If the steam ways, valve chest, and steam pipe also are jacketed, an increase in efficiency will be gained, though perhaps somewhat at the expense of appearance.
Boiler.βThe boiler described on pp. 211-216, or a vertical multitubular boiler with about 800 sq. inches of heating surface will drive this engine satisfactorily.
XVI. MODEL STEAM TURBINES.Steam turbines have come very much to the fore during recent years, especially for marine propulsion. In principle they are far simpler than cylinder engines, steam being merely directed at a suitable angle on to specially shaped vanes attached to a revolving drum and shaft. In the Parsons type of turbine the steam expands as it passes through successive rings of blades, the diameter of which rings, as well as the length and number of the blades, increases towards the exhaust end of the casing, so that the increasing velocity of the expanding steam may be taken full advantage of. The De Laval turbine includes but a single ring of vanes, against which the steam issues through nozzles so shaped as to allow the steam to expand somewhat and its molecules to be moving at enormous velocity before reaching the vanes. A De Laval wheel revolves at terrific speeds, the limit being tens of thousands of turns per minute for the smallest engines. The greatest efficiency is obtained, theoretically, when the vane velocity is half that of the steam, the latter, after passing round the curved inside surfaces of the vanes, being robbed of all its energy and speed. (For a fuller description of the steam turbine, see How It Works, Chap. III., pp.74-86.)
The turbines to be described work on the De Laval principle, which has been selected as the easier for the beginner to follow.
A Very Simple Turbine.
We will begin with a very simple contrivance, shown in Fig. 67. As a "power plant" it is confessedly useless, but the making of it affords amusement and instruction. For the boiler select a circular tin with a jointless stamped lid, not less than 4 inches in diameter, so as to give plenty of heating surface, and at least 2-1/2 inches deep, to ensure a good steam space and moderately dry steam. A shallow boiler may "prime" badly, if reasonably full, and fling out a lot of water with the steam.
Clean the metal round the joints, and punch a small hole in the lid, half an inch from the edge, to give egress to the heated air during the operation of soldering up the point or joints, which must be rendered absolutely water-tight.
[Illustration: FIG. 67.βSimple steam turbine.]
For the turbine wheel take a piece of thin sheet iron or brass; flatten it out, and make a slight dent in it an inch from the two nearest edges. With this dent as centre are scribed two circles, of 3/4 and 1/2 inch radius respectively. Then scratch a series of radial marks between the circles, a fifth
Comments (0)