Things To Make by Archibald Williams (which ebook reader TXT) đź“•
[Illustration: FIG. 5.--End elevation of joiner's bench.]
Back and Front.--The only operation to be performed on the front piece B and the back G is the notching of them both on the inside faces at the centre to take the ends of the bearer F, which performs the important function of preventing any bending of the top planks. Lay the boards together, top edges and ends level, and mark them at the same time. The square is then used on the faces to give the limits for the notches, which should be 1/4 inch deep and chiselled out carefully.
Draw cross lines with your square 3 inches from each end of both pieces, on the inside, to show where the legs are to be. Bore holes in the boards for the
Read free book «Things To Make by Archibald Williams (which ebook reader TXT) 📕» - read online or download for free at americanlibrarybooks.com
- Author: Archibald Williams
- Performer: -
Read book online «Things To Make by Archibald Williams (which ebook reader TXT) 📕». Author - Archibald Williams
Solder the spindle to the wheel in such a position that the vanes clear the boiler by an eighth of an inch or so. If tests show that the top runs quite vertically, the distance might be reduced to half, as the smaller it is the more effect will the steam jets have.
A small brass filler should be affixed to the boiler halfway up. A filler with ground joints costs about 6d.
A wick spirit lamp will serve to raise steam. Solder to the boiler three legs of such a length as to give an inch clearance between the lamp wick and the boiler. If the wick is arranged to turn up and down, the speed of the top can be regulated.
A Large Top.—The top just described must be light, as the steam driving it is low-pressure, having free egress from the boiler, and small, as the steam has comparatively low velocity. The possessor of a high-pressure boiler may be inclined to make something rather more ambitious—larger, heavier, and useful for displaying spectrum discs, etc.
The top shown in Fig. 77 is 3 inches in diameter, weighs 1 oz., and was cut out of sheet-zinc. It stands on a brass disc, round the circumference of which is soldered a ring of 5/32-inch copper tubing, furnished with a union for connection with a boiler.
[Illustration: FIG. 77.—-Large steam top and base.]
The copper tubing must be well annealed, so as to bend quite easily. Bevel off one end, and solder this to the plate. Bend a couple of inches to the curve of the plate, clamp it in position, and solder; and so on until the circle is completed, bringing the tube snugly against the bevelled end. A hole should now be drilled through the tube into this end—so that steam may enter the ring in both directions-and plugged externally.
By preference, the ring should be below the plate, as this gives a greater thickness of metal for drilling, and also makes it easy to jacket the tube by sinking the plate into a wooden disc of somewhat greater diameter.
Under 50 lbs. of steam, a top of this kind attains a tremendous velocity. Also, it flings the condensed steam about so indiscriminately that a ring of zinc 3 inches high and 18 inches in diameter should be made wherewith to surround it while it is running.
If a little bowl with edges turned over be accurately centred on the wheel, a demonstration of the effects of centrifugal force may be made with water, quicksilver, or shot, which fly up into the rim and disappear as the top attains high speed, and come into sight again when its velocity decreases to a certain figure. A perforated metal globe threaded on the spindle gives the familiar humming sound.
A spectrum disc of the seven primary colours—violet, indigo, blue, green, yellow, orange, red—revolved by the top, will appear more or less white, the purity of which depends on the accuracy of the tints used.
XVIII. MODEL BOILERS.A chapter devoted to the construction of model boilers may well open with a few cautionary words, as the dangers connected with steam-raisers are very real; and though model-boiler explosions are fortunately rare, if they do occur they may be extremely disastrous.
Therefore the following warnings:—
(1.) Do not use tins or thin sheet iron for boilers. One cannot tell how far internal corrosion has gone. The scaling of 1/100 inch of metal off a "tin" is obviously vastly more serious than the same diminution in the thickness of, say, a 1/4-inch plate. Brass and copper are the metals to employ, as they do not deteriorate at all provided a proper water supply be maintained.
(2.) If in doubt, make the boiler much more solid than is needed, rather than run any risks.
(3.) Fit a steam gauge, so that you may know what is happening.
(4.) Test your boiler under steam, and don't work it at more than half the pressure to which it has been tested. (See p. 220.)
In the present chapter we will assume that the barrels of all the boilers described are made out of solid-drawn seamless copper tubing, which can be bought in all diameters up to 6 inches, and of any one of several thicknesses. Brass tubing is more easily soldered, but not so good to braze, and generally not so strong as copper, other things being equal. Solid-drawn tubing is more expensive than welded tubing or an equivalent amount of sheet metal, but is considerably stronger than the best riveted tube.
Boiler ends may be purchased ready turned to size. Get stampings rather than castings, as the first are more homogeneous, and therefore can be somewhat lighter.
Flanging Boiler Ends.—To make a good job, a plate for an end should be screwed to a circular block of hard wood (oak or boxwood), having an outside diameter less than the inside diameter of the boiler barrel by twice the thickness of the metal of the end, and a rounded-off edge. The plate must be annealed by being heated to a dull red and dipped in cold water. The process must be repeated should the hammering make the copper stubborn.
Stays should be used liberally, and be screwed and nutted at the ends. As the cutting of the screw thread reduces the effective diameter, the strength of a stay is only that of the section at the bottom of the threads.
Riveting.—Though stays will prevent the ends of the boiler blowing off, it is very advisable to rivet them through the flanges to the ends of the barrel, as this gives mutual support independently of soldering or brazing. Proper boiler rivets should be procured, and annealed before use. Make the rivet holes a good fit, and drill the two parts to be held together in one operation, to ensure the holes being in line. Rivets will not close properly if too long. Dies for closing the rivet heads may be bought for a few pence.
Soldering, etc.—Joints not exposed directly to the furnace flames may be soldered with a solder melting not below 350 degrees Fahr. Surfaces to be riveted together should be "tinned" before riveting, to ensure the solder getting a good hold afterwards. The solder should be sweated right through the joint with a blow-lamp to make a satisfactory job.
All joints exposed to the flames should be silver-soldered, and other joints as well if the working pressure is to exceed 50 lbs. to the square inch. Silver-soldering requires the use of a powerful blow—lamp or gas-jet; ordinary soft soldering bits and temperatures are ineffective. Brazing is better still, but should be done by an expert, who may be relied on not to burn the metal. It is somewhat risky to braze brass, which melts at a temperature not far above that required to fuse the spelter (brass solder). Getting the prepared parts of a boiler silver-soldered or brazed together is inexpensive, and is worth the money asked.
[Illustration: FIG. 78.]
Some Points in Design.
The efficiency of a boiler is governed chiefly (1) by the amount of heating surface exposed to the flames; (2) by the distribution of the heating surface; (3) by the amount of fuel which can be burnt in the furnace in a given time; (4) by avoiding wastage of heat.
The simplest form of boiler, depicted in Fig. 78, is extremely inefficient because of its small heating surface. A great deal of the heat escapes round the sides and the ends of the boiler. Moreover, a good deal of the heat which passes into the water is radiated out again, as the boiler is exposed directly to the air.
Fig. 79 shows a great improvement in design. The boiler is entirely enclosed, except at one end, so that the hot gases get right round the barrel, and the effective heating surface has been more than doubled by fitting a number of water-tubes, aaa, bbbb, which lie right in the flames, and absorb much heat which would otherwise escape. The tubes slope upwards from the chimney end, where the heat is less, to the fire-door end, where the heat is fiercer, and a good circulation is thus assured. The Babcock and Wilcox boiler is the highest development of this system, which has proved very successful, and may be recommended for model boilers of all sizes. The heating surface may be increased indefinitely by multiplying the number of tubes. If a solid fuel-coal, coke, charcoal, etc.-fire is used, the walls of the casing should be lined with asbestos or fire-clay to prevent the metal being burnt away.
[Illustration: FIG. 79—Side and end elevations of a small water-tube boiler.]
The horizontal boiler has an advantage over the vertical in that, for an equal diameter of barrel, it affords a larger water surface, and is, therefore, less subject to "priming," which means the passing off of minute globules of water with the steam. This trouble, very likely to occur if the boiler has to run an engine too large for it, means a great loss of efficiency, but it may be partly cured by making the steam pass through coils exposed to the furnace gases on its way to the engine. This "superheating" evaporates the globules and dries the steam, besides raising its temperature. The small water-tube is preferable to the small fire-tube connecting furnace and chimney, as its surface is exposed more directly to the flames; also it increases, instead of decreasing, the total volume of water in the boiler.
A Vertical Boiler.
[Illustration: FIG. 80.—Details of vertical boiler.]
The vertical boiler illustrated by Fig. 80 is easily made. The absence of a water jacket to the furnace is partly compensated by fitting six water-tubes in the bottom. As shown, the barrel is 8 inches long and 6 inches in outside diameter, and the central flue 1-1/2 inches across outside solid-drawn 1/16-inch tubing, flanged ends, and four 1/4-inch stays—disposed as indicated in Fig. 80 (a) and (b)—are used. The 5/16 or 3/8 inch water-tubes must be annealed and filled with lead or resin before being bent round wooden templates. After bending, run the resin or lead out by heating. The outflow end of each pipe should project half an inch or so further through the boiler bottom than the inflow end.
Mark out and drill the tube holes in the bottom, and then the flue hole, for which a series of small holes must be made close together inside the circumference and united with a fret saw. Work the hole out carefully till the flue, which should be slightly tapered at the end, can be driven through an eighth of an inch or so. The flue hole in the top should be made a good fit, full size.
Rivet a collar, x (Fig. 80, a), of strip brass 1/4 inch above the bottom of the flue to form a shoulder. Another collar, y (Fig. 80, c), is needed for the flue above the top plate. Put the ends and flue temporarily in place, mark off the position of y, and drill half a dozen 5/32-inch screw holes through y and the flue. Also drill screw holes to hold the collar to the boiler top.
The steam-pipe is a circle of 5/16-inch copper tube, having one end closed, and a number of small holes bored in the upper side to collect the steam from many points at once. The other end is carried through the side of the boiler.
[Illustration: FIG. 81.—Perspective view of horizontal boiler mounted on wooden base.]
Assembling.—The order of assembling is:—Rivet in the bottom; put the steam-pipe in place; rivet in the top; insert the flue, and screw collar y to the top; expand the bottom of the flue by hammering so that it cannot be withdrawn; insert the stays and screw them up tight; silver-solder both ends of the flue, the bottom ends of the stays, and the joint between bottom and barrel. The water-tubes are then inserted and silver-soldered, and one finishes by soft-soldering the boiler top to the barrel and fixing in the seatings for the water and steam gauges, safety-valve, mud-hole, filler, and pump-if the last is fitted.
The furnace is lined with a strip of stout sheet iron, 7 inches wide and 19-1/4 inches long, bent round the barrel, which it overlaps for an inch and a half. Several screws hold lining and barrel together. To promote efficiency, the furnace and boiler is jacketed with asbestos—or fire-clay round the furnace—secured by a thin outer cover. The enclosing is
Comments (0)