American library books Β» Study Aids Β» Agriculture for Beginners by Daniel Harvey Hill (ebook reader 7 inch .TXT) πŸ“•

Read book online Β«Agriculture for Beginners by Daniel Harvey Hill (ebook reader 7 inch .TXT) πŸ“•Β».   Author   -   Daniel Harvey Hill



1 2 3 4 5 6 7 8 9 10 ... 42
Go to page:
so much easier for the roots to seek deep food. Fig. 21 illustrates well how far down into the soil the alfalfa roots go.

EXERCISE

Dig up the roots of several cultivated plants and weeds and compare them. Do you find some that are fine or fibrous? some fleshy like the carrot? The dandelion is a good example of a tap-root. Tap-roots are deep feeders. Examine very carefully the roots of a medium-sized corn plant. Sift the dirt away gently so as to loosen as few roots as possible. How do the roots compare in area with the part above the ground? Try to trace a single root of the corn plant from the stalk to its very tip. How long are the roots of mature plants? Are they deep or shallow feeders? Germinate some oats or beans in a glass-sided box, as suggested, and observe the root-hairs.

SECTION IX. HOW THE PLANT FEEDS FROM THE SOIL

Plants receive their nourishment from two sourcesβ€”from the air and from the soil. The soil food, or mineral food, dissolved in water, must reach the plant through the root-hairs with which all plants are provided in great numbers. Each of these hairs may be compared to a finger reaching among the particles of earth for food and water. If we examine the root-hairs ever so closely, we find no holes, or openings, in them. It is evident, then, that no solid particles can enter the root-hairs, but that all food must pass into the root in solution.

An experiment just here will help us to understand how a root feeds.

EXPERIMENT

Fig. 22.
Fig. 22. Experiment
to show how Roots
take up Food

Secure a narrow glass tube like the one in Fig. 22. If you cannot get a tube, a narrow, straight lamp-chimney will, with a little care, do nearly as well. From a bladder made soft by soaking, cut a piece large enough to cover the end of the tube or chimney and to hang over a little all around. Make the piece of bladder secure to the end of the tube by wrapping tightly with a waxed thread, as at B. Partly fill the tube with molasses (or it may be easier in case you use a narrow tube to fill it before attaching the bladder). Put the tube into a jar or bottle of water so placed that the level of the molasses inside and the water outside will be the same. Fasten the tube in this position and observe it frequently for three or four hours. At the end of the time you should find that the molasses in the tube has risen above the level of the liquid outside. It may even overflow at the top. If you use the lamp-chimney the rise will not be so clearly seen, since a greater volume is required to fill the space in the chimney. This increase in the contents of the tube is due to the entrance of water from the outside. The water has passed through the thin bladder, or membrane, and has come to occupy space in the tube. There is also a passage the other way, but the molasses can pass through the bladder membrane so slowly that the passage is scarcely noticeable. There are no holes, or openings, in the membrane, but still there is a free passage of liquids in both directions, although the more heavily laden solution must move more slowly.

A root-hair acts in much the same way as the tube in our experiment, with the exception that it is so made as to allow certain substances to pass in only one direction, that is, toward the inside. The outside of the root-hair is bathed in solutions rich in nourishment. The nourishment passes from the outside to the inside through the delicate membrane of the root-hair. Thus does food enter the plant-root. From the root-hairs, foods are carried to the inside of the root.

From this you can see how important it is for a plant to have fine, loose soil for its root-hairs; also how necessary is the water in the soil, since the food can be used only when it is dissolved in water.

This passage of liquids from one side of a membrane to another is called osmosis. It has many uses in the plant kingdom. We say a root takes nourishment by osmosis.

SECTION X. ROOT-TUBERCLES

Tubercle is a big word, but you ought to know how to pronounce it and what is meant by root-tubercles. We are going to tell you what a root-tubercle is and something about its importance to agriculture. When you have learned this, we are sure you will want to examine some plants for yourself in order that you may see just what tubercles look like on a real root.

Root-tubercles do not form on all kinds of plants that farmers grow. They are formed only on those kinds that botanists call legumes. The clovers, cowpeas, vetches, soy beans, and alfalfa are all legumes. The tubercles are little knotty, wart-like growths on the roots of the plants just named. These tubercles are caused by tiny forms of life called, as you perhaps already know, bacteria, or germs.

Fig. 23.
Fig. 23. Tubercles on Clover Roots

The specimen at the right was grown in soil inoculated with soil from an old clover field. The one at the left was grown in soil not inoculated]

Instead of living in nests in trees like birds or in the ground like moles and worms, these tiny germs, less than one twenty-five thousandth of an inch long, make their homes on the roots of legumes. Nestling snugly together, they live, grow, and multiply in their sunless homes. Through their activity the soil is enriched by the addition of much nitrogen from the air. They are the good fairies of the farmer, and no magician's wand ever blessed a land so much as these invisible folk bless the land that they live in.

Just as bees gather honey from the flowers and carry it to the hives, where they prepare it for their own future use and for the use of others, so do these root-tubercles gather nitrogen from the air and fix it in their root homes, where it can be used by other crops.

Fig. 24.
Fig. 24. Soy Beans and Cowpeas, Two Great Soil-Improvers

In the earlier pages of this book you were told something about the food of plants. One of the main elements of plant food, perhaps you remember, is nitrogen. Just as soon as the roots of the leguminous plants begin to push down into the soil, the bacteria, or germs that make the tubercles, begin to build their homes on the roots, and in so doing they add nitrogen to the soil. You now see the importance of growing such crops as peas and clover on your land, for by their tubercles you can constantly add plant food to the soil. Now this much-needed nitrogen is the most costly part of the fertilizers that farmers buy every year. If every farmer, then, would grow these tubercle-bearing crops, he would rapidly add to the richness of his land and at the same time escape the necessity of buying so much expensive fertilizer.

EXPERIMENT

Take a spade or shovel and dig carefully around the roots of a cowpea and a clover plant; loosen the earth thoroughly and then pull the plants up, being careful not to break off any of the roots. Now wash the roots, and after they become dry count the nodules, or tubercles, on them. Observe the difference in size. How are they arranged? Do all leguminous plants have equal numbers of nodules? How do these nodules help the farmer?

SECTION XI. THE ROTATION OF CROPS

Doubtless you know what is meant by rotation, for your teacher has explained to you already how the earth rotates, or turns, on its axis and revolves around the sun. When we speak of crop-rotation we mean not only that the same crop should not be planted on the same land for two successive years but that crops should follow one another in a regular order.

Many farmers do not follow a system of farming that involves a change of crops. In some parts of the country the same fields are planted to corn or wheat or cotton year after year. This is not a good practice and sooner or later will wear out the soil completely, because the soil-elements that furnish the food of that constant crop are soon exhausted and good crop-production is no longer possible.

Why is crop-rotation so necessary? There are different kinds of plant food in the soil. If any one of these is used up, the soil of course loses its power to feed plants properly. Now each crop uses more of some of the different kinds of foods than others do, just as you like some kinds of food better than others. But the crop cannot, as you can, learn to use the kinds of food it does not like; it must use the kind that nature fitted it to use. Not only do different crops feed upon different soil foods, but they use different quantities of these foods.

Now if a farmer plant the same crop in the same field each year, that crop soon uses up all of the available plant food that it likes. Hence the soil can no longer properly nourish the crop that has been year by year robbing it. If that crop is to be successfully grown again on the land, the exhausted element must be restored.

Fig. 25.
Fig. 25. Grass following Corn

This can be done in two ways: first, by finding out what element has here been exhausted, and then restoring this element by means either of commercial fertilizers or manure; second, by planting on the land crops that feed on different food and that will allow or assist kind Mother Nature "to repair her waste places." An illustration may help you to remember this fact. Nitrogen is, as already explained, one of the commonest plant foods. It may almost be called plant bread. The wheat crop uses up a good deal of nitrogen. Suppose a field were planted in wheat year after year. Most of the available nitrogen would be taken out of the soil after a while, and a new wheat crop, if planted on the field, would not get enough of its proper food to yield a paying harvest. This same land, however, that could not grow wheat could produce other crops that do not require so much nitrogen. For example, it could grow cowpeas. Cowpeas, aided by their root-tubercles, are able to gather from the air a great part of the nitrogen needed for their growth. Thus a good crop of peas can be obtained even if there is little available nitrogen in the soil. On the other hand wheat and corn and cotton cannot use the free nitrogen of the air, and they suffer if there is an insufficient quantity present in the soil; hence the necessity of growing legumes to supply what is lacking.

Fig. 26.
Fig. 26. Cowpeas and Cornβ€”August

Let us now see how easily plant food may be saved by the rotation of crops.

If you sow wheat in the autumn it is ready to be harvested in time for planting cowpeas. Plow or disk the wheat stubble, and sow the same field to cowpeas. If the wheat crop has exhausted the greater part of the nitrogen of the soil, it makes no difference to the cowpea; for the cowpea will get its nitrogen from the air and not only provide for its own growth but will leave quantities of nitrogen in the queer nodules of its roots for the crops coming after it in the rotation.

Fig.
1 2 3 4 5 6 7 8 9 10 ... 42
Go to page:

Free e-book: Β«Agriculture for Beginners by Daniel Harvey Hill (ebook reader 7 inch .TXT) πŸ“•Β»   -   read online now on website american library books (americanlibrarybooks.com)

Comments (0)

There are no comments yet. You can be the first!
Add a comment