Agriculture for Beginners by Daniel Harvey Hill (ebook reader 7 inch .TXT) π
The joint action of air, moisture, and frost was still another agent of soil-making. This action is called weathering. Whenever you have noticed the outside stones of a spring-house, you have noticed that tiny bits are crumbling from the face of the stones, and adding little by little to the soil. This is a slow way of making additions to the soil. It is estimated that it would take 728,000 years to wear away limestone rock to a depth of thirty-nine inches. But when you recall the countless years through which the weather has striven against the rocks, you can readily understand that its never-wearying activity has added immensely to the soil.
In the rock soil formed in these various ways, and indeed on the rocks themselves, tiny plants that live on food taken from the air began to grow. They grew just as you now see mosses and lichens grow on the surface of rocks. The decay of these plants added some fertility to the newly formed soil. The life and death of
Read free book Β«Agriculture for Beginners by Daniel Harvey Hill (ebook reader 7 inch .TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Daniel Harvey Hill
- Performer: -
Read book online Β«Agriculture for Beginners by Daniel Harvey Hill (ebook reader 7 inch .TXT) πΒ». Author - Daniel Harvey Hill
It is often the case that a budded or grafted plant is more fruitful than a plant on its own roots. In cases of this kind, of course, grafts or buds are used.
The white, or Irish, potato is usually propagated from pieces of the potato itself. Each piece used for planting bears one eye or more. The potato itself is really an underground stem and the eyes are buds. This method of propagation is therefore really a peculiar kind of cutting.
Since the eye is a bud and our potato plant for next year is to develop from this bud, it is of much importance, as we have seen, to know exactly what kind of plant our potato comes from. If the potato is taken from a small plant that had but a few poor potatoes in the hill, we may expect the bud to produce a similar plant and a correspondingly poor crop. We must see to it, then, that our seed potatoes are drawn from vines that were good producers, because new potato plants are like the plants from which they were grown. Of course when our potatoes are in the bin we cannot tell from what kind of plants they came. We must therefore select our seed potatoes in the field. Seed potatoes should always be selected from those hills that produce most bountifully. Be assured that the increased yield will richly repay this care in selecting. It matters not so much whether the seed potato be large or small; it must, however, come from a hill bearing a large yield of fine potatoes.
Fig. 46.
Begonia-Leaf Cutting
Sweet-potato plants are produced from shoots, or growing buds, taken from the potato itself, so that in their case too the piece that we use in propagating is a part of the original plant, and will therefore be like it under similar conditions. Just as with the Irish potato, it is important to know how good a yielder you are planting. You should watch during harvest and select for propagation for the next year only such plants as yield best.
We should exercise fully as much care in selecting proper individuals from which to make a cutting or a layer as we do in selecting a proper animal to breed from. Just as we select the finest Jersey in the herd for breeding purposes, so we should choose first the variety of plant we desire and then the finest individual plant of that variety.
If the variety of the potato that we desire to raise be Early Rose, it is not enough to select any Early Rose plants, but the very best Early Rose plants, to furnish our seed.
Fig. 47. Layering
It is not enough to select large, fine potatoes for cuttings. A large potato may not produce a bountifully yielding plant. It will produce a plant like the one that produced it. It may be that this one large potato was the only one produced by the original plant. If so, the plant that grows from it will tend to be similarly unproductive. Thus you see the importance of selecting in the field a plant that has exactly the qualities desired in the new plant.
Fig. 48. Currant Cutting
One of the main reasons why gardeners raise plants from buds instead of from seeds is that the seed of many plants will not produce plants like the parent. This failure to "come true," as it is called, is sometimes of value, for it occasionally leads to improvement. For example, suppose that a thousand apple or other fruit or flower seeds from plants usually propagated by cuttings be planted; it may be that one out of a thousand or a million will be a very valuable plant. If a valuable plant be so produced, it should be most carefully guarded, multiplied by cuttings or grafts, and introduced far and wide. It is in this way that new varieties of fruits and flowers are produced from time to time.
Sometimes, too, a single bud on a tree will differ from the other buds and will produce a branch different from the other branches. This is known as bud variation. When there is thus developed a branch which happens to be of a superior kind, it should be propagated by cuttings just as you would propagate it if it had originated from a seed.
Mr. Gideon of Minnesota planted many apple seeds, and from them all raised one tree that was very fruitful, finely flavored, and able to withstand the cold Minnesota winter. This tree he multiplied by grafts and named the Wealthy apple. It is said that in giving this one apple to the world he benefited mankind to the value of more than one million dollars. It will be well to watch for any valuable bud or seed variant and never let a promising one be lost. Plants grown in this way from seeds are usually spoken of as seedlings.
A LUSCIOUS AND EASILY GROWN BERRY Plants to be propagated from Buds
The following list gives the names and methods by which our common garden fruits and flowers are propagated:
Figs: use cuttings 8 to 10 inches long or layer.
Grapes: use long cuttings, layer, or graft upon old vines.
Apples: graft upon seedlings, usually crab seedlings one year old.
Pears: bud upon pear seedlings.
Cherries: bud upon cherry stock.
Plums: bud upon peach stock.
Peaches: bud upon peach or plum seedlings.
Quinces: use cuttings or layer.
Blackberries: propagate by suckers; cut from parent stem.
Black raspberries: layer; remove old stem.
Red raspberries: propagate by root-cuttings or suckers.
Strawberries: propagate by runners.
Currants and gooseberries: use long cuttings (these plants grow well only in cool climates;
if attempted in warmclimates, set in cold exposure).
Carnations, geraniums, roses, begonias, etc.: propagate by
cuttings rooted in sand and then transplanted to small pots.
EXERCISE
Propagate fruits (grape, fig, strawberry) of various kinds; also ornamental plants. How long does it take them to root? Geraniums rooted in the spring will bloom in the fall. Do you know any one who selects seed potatoes properly? Make a careful selection of seed at the next harvest-time.
SECTION XVIII. PLANT SEEDINGIn propagating by seed, as in reproducing by buds, we select a portion of the parent plantβfor a seed is surely a part of the parent plantβand place it in the ground. There is, however, one great difference between a seed and a bud. The bud is really a piece of the parent plant, but a piece of one plant only, while a seed comes from the parts of two plants.
You will understand this fully if you read carefully Sections XIV-XVI. Since the seed is made of two plants, the plant that springs from a seed is much more likely to differ from its mother plant, that is, from the plant that produces the seed, than is a plant produced merely by buds. In some cases plants "come true to seed" very accurately. In others they vary greatly. For example, when we plant the seed of wheat, turnips, rye, onions, tomatoes, tobacco, or cotton, we get plants that are in most respects like the parent plant. On the other hand the seed of a Crawford peach or a Baldwin apple or a Bartlett pear will not produce plants like its parent, but will rather resemble its wild forefathers. These seedlings, thus taking after their ancestors, are always far inferior to our present cultivated forms. In such cases seeding is not practicable, and we must resort to bud propagation of one sort or another.
While in a few plants like those just mentioned the seed does not "come true," most plants, for example, cotton, tobacco, and others, do "come true." When we plant King cotton we may expect to raise King cotton. There will be, however, as every one knows, some or even considerable variation in the field. Some plants, even in exactly the same soil, will be better than the average, and some will be poorer. Now we see this variation in the plants of our field, and we believe that the plant will be in the main like its parent. What should we learn from this? Surely that if we wish to produce sturdy, healthy, productive plants we must go into our fields and pick out just such plants to secure seed from as we wish to produce another year. If we wait until the seed is separated from the plant that produced it before we select our cotton seed, we shall be planting seed from poor as well as from good plants, and must be content with a crop of just such stock as we have planted. By selecting seed from the most productive plants in the field and by repeating the selection each year, you can continually improve the breed of the plant you are raising. In selecting seed for cotton you may follow the plan suggested below for wheat.
Figs. 49 and 50. Chrysanthemums and Asparagus
The difference that you see between the wild and the cultivated chrysanthemums and between the samples of asparagus shown in Figs. 49 and 50 was brought about by just such continuous seed-selection from the kind of plant wanted.
Fig. 51. Two Varieties of Flax From One Parent Stock
By the careful selection of seed from the longest flax plants the increase in length shown in the accompanying figure was gained. The selection of seed from those plants bearing the most seed, regardless of the height of the plant, has produced flax like that to the right in the illustration. These two kinds of flax are from the same parent stock, but slight differences have been emphasized by continued seed-selection, until we now have really two varieties of flax, one a heavy seed-bearer, the other producing a long fiber.
You can in a similar way improve your cotton or any other seed crop. Sugar beets have been made by seed-selection to produce about double the percentage of sugar that they did a few years ago. Preparing and tilling land costs too much in money and work to allow the land to be planted with poor seed. When you are trying by seed-selection to increase the yield of cotton, there are two principles that should be borne in mind: first, seed should be chosen only from plants that bear many well-filled bolls of long-staple cotton; second, seed should be taken from no plant that does not by its healthy condition show hardihood in resisting disease and drouth.
The plan of choosing seeds from selected plants may be applied to wheat; but it would of course be too time-consuming to select enough single wheat plants to furnish all of the seed wheat for the next year. In this case adopt the following plan: In Fig. 52 let A represent the total size of your wheat field and let B represent a plat large enough to furnish seed for the whole field. At harvest-time go into section A and select the best plants you can find. Pick the heads of these and thresh them by hand. The seed so obtained must be carefully saved for your next sowing.
Fig. 52.
In the fall sow these selected seeds in area B. This area should produce the best wheat. At the next harvest cull not from the whole field but from the finest plants of plat B, and again save these as seed for plat B. Use the unculled seed from plat B to sow
Comments (0)