Data Mining by Mehmed Kantardzic (good book recommendations TXT) π
Read free book Β«Data Mining by Mehmed Kantardzic (good book recommendations TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Mehmed Kantardzic
Read book online Β«Data Mining by Mehmed Kantardzic (good book recommendations TXT) πΒ». Author - Mehmed Kantardzic
CHAPTER 3
Adriaans, P., D. Zantinge, Data Mining, Addison-Wesley Publ. Co., New York, 1996.
Berson, A., S. Smith, K. Thearling, Building Data Mining Applications for CRM, McGraw-Hill, New York, 2000.
Brachman, R. J., T. Khabaza, W. Kloesgen, G. S. Shapiro, E. Simoudis, Mining Business Databases, CACM, Vol. 39, No. 11, 1996, pp. 42β48.
Chen, C. H., L. F. Pau, P. S. P. Wang, Handbook of Pattern Recognition and Computer Vision, World Scientific Publ. Co., Singapore, 1993.
Clark, W. A. V., M. C. Deurloo, Categorical Modeling/Automatic Interaction Detection, Encyclopedia of Social Measurement, 2005, pp. 251β258.
Dwinnell, W., Data Cleansing: An Automated Approach, PC AI, March/April 2001, pp. 21β23.
Eddy, W. F., Large Data Sets in Statistical Computing, in International Encyclopedia of the Social & Behavioral Sciences, N. J. Smelser, P. B. Battes, ed., Pergamon, Oxford, 2004, pp. 8382β8386.
Fayyad, U. M., G. Piatetsky-Shapiro, P. Smith, R. Uthurusamy, eds., Advances in Knowledge Discovery and Data Mining, AAAI Press/MIT Press, Cambridge, 1996.
Groth, R., Data Mining: A Hands-On Approach for Business Professionals, Prentice Hall, Inc., Upper Saddle River, NJ, 1998.
Han, J., M. Kamber, Data Mining: Concepts and Techniques, 2nd edition, Morgan Kaufmann, San Francisco, CA, 2006.
Jain, A., R. P. W. Duin, J. Mao, Statistical Pattern Recognition, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 22, No. 1, 2000, pp. 4β37.
Kennedy, R. L., et al. Solving Data Mining Problems through Pattern Recognition, Prentice Hall, Upper Saddle River, NJ, 1998.
Kil, D. H., F. B. Shin, Pattern Recognition and Prediction with Applications to Signal Characterization, AIP Press, Woodburg, NY, 1996.
Liu, H., H. Motoda, eds., Feature Extraction, Construction and Selection: A Data Mining Perspective, Kluwer Academic Publishers, Boston, MA, 1998.
Liu, H., H. Motoda, Feature Selection for Knowledge Discovery and Data Mining, Second Printing, Kluwer Academic Publishers, Boston, 2000.
Liu, H., H. Motoda, eds., Instance Selection and Construction for Data Mining, Kluwer Academic Publishers, Boston, MA, 2001.
Maimon, O., M. Last, Knowledge Discovery and Data Mining: The Info-Fuzzy Network (IFN) Methodology, Kluwer Academic Publishers, Boston, MA, 2001.
Pyle, D., Data Preparation for Data Mining, Morgan Kaufmann Publ. Inc., New York, 1999.
Sun, Y., Iterative RELIEF for Feature Weighting: Algorithms, Theories, and Applications, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 6, 2007, pp. 1035β1051.
Sun, Y., D. Wu, Feature Extraction through Local Learning, Proceedings of the 21st International Conference on Machine Learning, Banff, Canada, 2004.
Sun, Y., D. Wu, A RELIEF Based Feature Extraction Algorithm, Proc. of the 8th SIAM Intl. Conf. Data Mining, 2008.
Tan, P.-N., M. Steinbach, V. Kumar, Introduction to Data Mining, Pearson Addison-Wesley, Boston, 2006.
Wang, Y., F. Makedon, Application of Relief-F Feature Filtering Algorithm to Selecting Informative Genes for Cancer Classification Using Microarray Data, 2004 IEEE Computational Systems Bioinformatics Conference (CSB'04), Stanford, CA, August 2004.
Weiss, S. M., N. Indurkhya, Predictive Data Mining: A Practical Guide, Morgan Kaufman Publishers, Inc., San Francisco, CA, 1998.
Westphal, C., T. Blaxton, Data Mining Solutions: Methods and Tools for Solving Real-World Problems, John Wiley & Sons, Inc., New York, 1998.
Witten, I. H., E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, 2nd edition, Elsevier Inc., St. Louis, MO, 2005.
Yang, Q., X. Wu, 10 Challenging Problems in Data Mining Research, International Journal of Information Technology and Decision Making, Vol. 5, No. 4, 2006, pp. 597β604.
CHAPTER 4
Alpaydin, E., Introduction to Machine Learning, 2nd edition, The MIT Press, Cambridge, 2010.
Berbaum, K. S., D. D. Dorfman, E. A. Franken Jr., Measuring Observer Performance by ROC Analysis: Indications and Complications, Investigative Radiology, Vol. 2A, 1989, pp. 228β233.
Berthold, M., D. J. Hand, eds., Intelligent Data AnalysisβAn Introduction, Springer, Berlin, 1999.
Bow, S., Pattern Recognition and Image Preprocessing, Marcel Dekker, New York, 1992.
Cherkassky, V., F. Mulier, Learning from Data: Concepts, Theory and Methods, John Wiley & Sons, Inc., New York, 1998.
Diettrich, T. G., Machine-Learning Research: Four Current Directions, AI Magazine, Winter 1997, pp. 97β136.
Engel, A., C. Van den Broeck, Statistical Mechanics of Learning, Cambridge University Press, Cambridge, UK, 2001.
Gunopulos, D., R. Khardon, H. Mannila, H. Toivonen, Data Mining, Hypergraph Traversals, and Machine Learning, Proceedings of PODSβ97 Conference, Tucson, 1997, pp. 209β216.
Hand, D., H. Mannila, P. Smyth, Principles of Data Mining, The MIT Press, Cambridge, 2001.
Hearst, M., Support Vector Machines, IEEE Intelligent Systems, July/August 1998, pp. 18β28.
Hilderman, R. J., H. J. Hamilton, Knowledge Discovery and Measures of Interest, Kluwer Academic Publishers, Boston, MA, 2001.
Hirji, K. K., Exploring Data Mining Implementation, CACM, Vol. 44, No. 7, 2001, pp. 87β93.
Hsu, C., C. Chang, C. Lin, A Practical Guide to Support Vector Classification, http://www.csie.ntu.edu.tw/βΌcjlin/papers/guide/guide.pdf, 2009.
Jackson, J., Data Mining: A Conceptual Overview, Communications of the Association for Information Systems, Vol. 8, 2002, pp. 267β296.
Kennedy, R. L., et al., Solving Data Mining Problems through Pattern Recognition, Prentice Hall, Upper Saddle River, NJ, 1998.
Kitts, B., G. Melli, K. Rexer, eds., Data Mining Case Studies, Proceedings of the First International Workshop on Data Mining Case Studies, 2005.
Kukar, M., Quality Assessment of Individual Classifications in Machine Learning and Data Mining, Knowledge and Information Systems, Vol. 9, No. 3, 2006, pp. 364β384.
Lavrac, N., et al., Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving, Machine Learning, Vol. 57, 2004, pp. 13β34.
Leondes, C. T., Knowledge-Based Systems: Techniques and Applications, Academic Press, San Diego, 2000.
Luger, G. F., W. A. Stubblefield, Artificial Intelligence: Structures and Strategies for Complex Problem Solving, Addison Wesley Longman, Inc., Harlow, UK, 1998.
Metz, C. E., B. A. Herman, C. A. Roe, Statistical Comparison of Two ROC-Curve Estimates Obtained from Partially-Paired Datasets, Medical Decision Making, Vol. 18, No. 1, 1998, pp. 110β124.
Mitchell, T. M., Does Machine Learning Really Work? AI Magazine, Fall 1997a, pp. 11β20.
Mitchell, T., Machine Learning, McGraw Hill, New York, 1997b.
Nisbet, R., J. Elder, G. Miner, Classification, in Handbook of Statistical Analysis and Data Mining Applications, R. Nisbet, J. Elder, J. F. Elder, G. Miner, eds., Academic Press, Amsterdam, NL, 2009a, pp. 235β258.
Nisbet, R., J. Elder, G. Miner, Model Evaluation and Enhancement, in Handbook of Statistical Analysis and Data Mining Applications, R. Nisbet, J. Elder, J. F. Elder, G. Miner, eds., Academic Press, Amsterdam, NL, 2009b, pp. 285β312.
Ortega, P., C. Figueroa, G. Ruz, A Medical Claim Fraud/Abuse Detection System Based on Data Mining: A Case
Comments (0)