Data Mining by Mehmed Kantardzic (good book recommendations TXT) π
Read free book Β«Data Mining by Mehmed Kantardzic (good book recommendations TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Mehmed Kantardzic
Read book online Β«Data Mining by Mehmed Kantardzic (good book recommendations TXT) πΒ». Author - Mehmed Kantardzic
Thuraisingham, B., Managing and Mining Multimedia Databases, CRC Press LLC, Boca Raton, FL, 2001.
Witten, I. H., E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmannn Publ., Inc., New York, 1999.
Wu, X., et al., Top 10 Algorithms in Data Mining, Knowledge and Information Systems, Vol. 14, 2008, pp. 1β37.
Yang, Q., X. Wu, 10 Challenging Problems in Data Mining Research, International Journal of Information Technology Decision Making, Vol. 5, No. 4, 2006, pp. 597β604.
CHAPTER 11
Akerkar, R., P. Lingras, Building an Intelligent Web: Theory and Practice, Jones and Bartlett Publishers, Sudbury, MA, 2008.
Chang, G., M. J. Haeley, J. A. M. McHugh, J. T. L. Wang, Mining the World Wide Web: An Information Search Approach, Kluwer Academic Publishers, Boston, MA, 2001.
Fan, F., L. Wallace, S. Rich, Z. Zhang, Tapping the Power of Text Mining, Communications of ACM, Vol. 49, No. 9, 2006, pp. 76β82.
Garcia, E., SVD and LSI Tutorial 4: Latent Semantic Indexing (LSI) How-to Calculations, Mi Islita, 2006, http://www.miislita.com/information-retrieval-tutorial/svd-lsi-tutorial-4-lsi-how-to-calculations.html.
Han, J., M. Kamber, Data Mining: Concepts and Techniques, 2nd edition, San Francisco, Morgan Kaufmann, 2006.
Jackson, P., I. Moulinier, Natural Language Processing for Online Applications: Text Retrieval, Extraction and Categorization, John Benjamins Publ. Co., Amsterdam, 2007.
Langville, A. N., C. D. Meyer, Googleβs PageRank and Beyond: The Science of Search Engine Rankings, Princeton University Press, Princeton, 2006.
Liu, B., Web Data Mining: Exploring Hyperlinks, Contents and Usage Data, Springer, Heidelberg, 2007.
Mulvenna, M. D., et al., eds., Personalization on the Net Using Web Mining, CACM, Vol. 43, No. 8, 2000.
Nisbet, R., J. Elder, G. Miner, Advanced Algorithms for Data Mining, in Handbook of Statistical Analysis and Data Mining Applications, R. Nisbet, J. Elder, J. F. Elder, G. Miner, eds., Academic Press, Amsterdam, NL, 2009, pp. 151β172.
Sirmakessis, S., Text Mining and Its Applications, Springer-Verlag, Berlin, 2003.
Zhang, Q., R. S. Segall, Review of Data, Text and Web Mining Software, Kybernetes, Vol. 39, No. 4, 2010, pp. 625β655.
Zhang, Y., et al., Computational Web Intelligence: Intelligent Technology for Web Applications, World Scientific Publ. Co., Singapore, 2004.
Zhang, X., J. Edwards, J. Harding, Personalised Online Sales Using Web Usage Data Mining, Computers in Industry, Vol. 58, No. 8β9, 2007, pp. 772β782.
CHAPTER 12
Antunes, C., A. Oliveira, Temporal Data Mining: An Overview, Proceedings of Workshop on Temporal Data Mining (KDD'01). 2001, pp. 1β13.
Bar-Or, A., R. Wolff, A. Schuster, D. Keren, Decision Tree Induction in High Dimensional, Hierarchically Distributed Databases, Proceedings of 2005 SIAM International Conference on Data Mining (SDMβ05), Newport Beach, CA, April 2005.
Basak, J., R. Kothari, A Classification Paradigm for Distributed Vertically Partitioned Data, Neural Computation, Vol. 16, No. 7, 2004, pp. 1525β1544.
Bhaduri, K., R. Wolff, C. Giannella, H. Kargupta, Distributed Decision-Tree Induction in Peer-to-Peer Systems, Statistical Analysis and Data Mining, Vol. 1, No. 2, 2008, pp. 85β103.
Bishop, C. M., Pattern Recognition and Machine Learning, Springer, New York, 2006.
Branch, J., B. Szymanski, R. Wolff, C. Gianella, H. Kargupta, In-network Outlier Detection in Wireless Sensor Networks, Proceedings of the 26th International Conference on Distributed Computing Systems (ICDCS), July 2006, pp. 102β111.
Cannataro, M., D. Talia, The Knowledge Grid, Communications of the ACM, Vol. 46, No. 1, 2003, pp. 89β93.
Cios, K. J., W. Pedrycz, R. W. Swiniarski, L. A. Kurgan, Data Mining: A Knowledge Discovery Approach, Springer, New York, 2007.
Congiusta, A., D. Talia, P. Trunfio, Service-Oriented Middleware for Distributed Data Mining on the Grid, Journal of Parallel and Distributed Computing, Vol. 68, No. 1, 2008, pp. 3β15.
Copp, C., Data Mining and Knowledge Discovery Techniques, Defence Today, NCW 101, 2008, http://www.ausairpower.net/NCW-101-17.pdf.
Datta, S., K. Bhaduri, C. Giannella, R. Wolff, H. Kargupta, Distributed Data Mining in Peer-to-Peer Networks, IEEE Internet Computing, Vol. 10, No. 4, 2006, pp. 18β26.
Ester, M., H.-P. Kriegel, J. Sander, Spatial Data Mining: A Database Approach, Proceedings of 5th International Symposium on Advances in Spatial Databases, 1997, pp. 47β66.
Faloutsos, C., Mining Time Series Data, Tutorial ICML 2003, Washington, DC, August 2003.
Fuchs, E., T. Gruber, J. Nitschke, B. Sick, On-Line Motif Detection in Time Series with Swift Motif, Pattern Recognition, Vol. 42, 2009, pp. 3015β3031.
Gorodetsky, V., O. Karsaeyv, V. Samoilov, Software Tool for Agent Based Distributed Data Mining, International Conference on Integration of Knowledge Intensive Multi-Agent Systems (KIMAS), Boston, MA, October 2003.
Guo, H., W. Hsu, A Survey of Algorithms for Real-Time Bayesian Network Inference, AAAI-02/KDD-02/UAI-02 Workshop on Real-Time Decision Support and Diagnosis, 2002.
Hammouda, K., M. Kamel, HP2PC: Scalable Hierarchically-Distributed Peer-to-Peer Clustering, Proceedings of the 2007 SIAM International Conference on Data Mining (SDM β07), Philadelphia, PA, 2007.
Januzaj, E., et al., Towards Effective and Efficient Distributed Clustering, Proceedings of the ICDM 2003 Conference, Florida, 2003.
Keogh, E., Data Mining and Machine Learning in Time Series Databases, Tutorial ECML/PKDD 2003, Cavtat-Dubrovnik (Croatia), September 2003.
Koperski, K., et al., Spatial Data Mining: Progress and Challenges, SIGMODβ96 Workshop on Research Issues on Data Mining and Knowledge Discovery, 1996.
Kotecha, J. H., V. Ramachandran, A. M. Sayeed, Distributed Multitarget Classification in Wireless Sensor Networks, IEEE Journal of Selected Areas in Communications, Vol. 23, No. 4, 2005, pp. 703β713.
Kriegel, H. P., et al., Future Trends in Data Mining, Data Mining and Knowledge Discovery, Vol. 15, 2007, pp. 87β97.
Kumar, A., M. Kantardzic, S. Madden, Guest Editors, Introduction: Distributed Data MiningβFramework and Implementations, IEEE Internet Computing, Vol. 10, No. 4, 2006, pp. 15β17.
Lavrac, N., et al., Introduction: Lessons Learned from Data Mining Applications and Collaborative Problem Solving, Machine Learning, Vol. 57, 2004, pp. 13β34.
Laxman, S., P. S. Sastry, A Survey of Temporal Data Mining, Sadhana, Vol. 31, No. 2, 2006, pp. 173β198.
Li, T., S. Zhu, M. Ogihara, Algorithms for Clustering High Dimensional and Distributed Data, Intelligent Data Analysis Journal, Vol. 7, No. 4, 2003.
Li, S., T. Wu, W. M. Pottenger, Distributed Higher Order Association Rule Mining Using Information Extracted from Textual Data, SIGKDD Exploration, Vol. 7, No. 1, 2005, pp. 26β35.
Liu, K., H. Kargupta, J. Ryan, Random Projection-Based Multiplicative Data Perturbation for Privacy Preserving Distributed Data Mining, IEEE Transactions on Knowledge and Data Engineering (TKDE), Vol. 18, No. 1, 2006, pp. 92β106.
Miller, H. J., Geographic Data Mining and Knowledge Discovery, in Handbook of Geographic Information Scienceβ,
Comments (0)