Data Mining by Mehmed Kantardzic (good book recommendations TXT) π
Read free book Β«Data Mining by Mehmed Kantardzic (good book recommendations TXT) πΒ» - read online or download for free at americanlibrarybooks.com
- Author: Mehmed Kantardzic
Read book online Β«Data Mining by Mehmed Kantardzic (good book recommendations TXT) πΒ». Author - Mehmed Kantardzic
Bow, S., Pattern Recognition and Image Preprocessing, Marcel Dekker, New York, 1992.
Chen, C. H., L. F. Pau, P. S. P. Wang, Handbook of Pattern Recognition & Computer Vision, World Scientific Publ. Co., Singapore, 1993.
Dzeroski, S., N. Lavrac, eds., Relational Data Mining, Springer, Berlin, 2001.
Gose, E., R. Johnsonbaugh, S. Jost, Pattern Recognition and Image Analysis, Prentice Hall, Inc., Upper Saddle River, NJ, 1996.
Han, J., M. Kamber, Data Mining: Concepts and Techniques, 2nd edition, Elsevier Inc., San Francisco, CA, 2006.
Han, J., et al., Spatial Clustering Methods in Data Mining: A Survey, in Geographic Data Mining and Knowledge Discovery, H. Miller, J. Han, eds., Taylor & Francis Publ. Inc., London, 2001.
Hand, D., H. Mannila, P. Smyth, Principles of Data Mining, The MIT Press, Cambridge, MA, 2001.
Jain, A. K., Data Clustering: 50 Years Beyond K-Means, Pattern Recognition Letters, Vol. 31, No. 8, 2010, pp. 651β666.
Jain, A. K., M. N. Murty, P. J. Flynn, Data Clustering: A Review, ACM Computing Surveys, Vol. 31, No. 3, 1999, pp. 264β323.
Jin, H., H. Shum, K. Leung, M. Wong, Expanding Self-Organizing Map for Data Visualization and Cluster Analysis, Information Sciences, Vol. 163, Nos. 1β3, 2004, pp. 157β173.
Karypis, G., E. Han, V. Kumar, Chameleon: Hierarchical Clustering Using Dynamic Modeling, Computer, Vol. 32, No. 8, 1999, pp. 68β75.
Lee, I., J. Yang, Common Clustering Algorithms, Comprehensive Chemometrics, 2009, Chapter 2.27, pp. 577β618.
Moore, S. K., Understanding the Human Genoma, Spectrum, Vol. 37, No. 11, 2000, pp. 33β35.
Munakata, T., Fundamentals of the New Artificial Intelligence: Beyond Traditional Paradigm, Springer, New York, 1998.
Norusis, M. J., SPSS 7.5: Guide to Data Analysis, Prentice-Hall, Inc., Upper Saddle River, NJ, 1997.
Poole, D., A. Mackworth, R. Goebel, Computational Intelligence: A Logical Approach, Oxford University Press, Inc., New York, 1998.
Tan, P.-N., M. Steinbach, V. Kumar, Introduction to Data Mining, Pearson Addison-Wesley, Boston, 2006.
Westphal, C., T. Blaxton, Data Mining Solutions: Methods and Tools for Solving Real-World Problems, John Wiley & Sons, Inc., New York, 1998.
Witten, I. H., E. Frank, Data Mining: Practical Machine Learning Tools and Techniques with Java Implementations, Morgan Kaufmannn Publ., Inc., New York, 1999.
CHAPTER 10
Adamo, J., Data Mining for Association Rules and Sequential Patterns, Springer, New York, 2001.
Beyer, K., R. Ramakrishnan, Bottom-Up Computation of Sparse and Iceberg Cubes, Proceedings of 1999 ACM-SIGMOD Int. Conf. on Management of Data (SIGMODβ99), Philadelphia, PA, June, 1999, pp. 359β370.
Bollacker, K. D., S. Lawrence, C. L. Giles, Discovering Relevant Scientific Literature on the Web, IEEE Intelligent Systems, March/April 2000, pp. 42β47.
Chakrabarti, S., Data Mining for Hypertext: A Tutorial Survey, SIGKDD Explorations, Vol. 1, No. 2, 2000, pp. 1β11.
Chakrabarti, S., et al., Mining the Webβs Link Structure, Computer, Vol. 32, No. 8, 1999, pp. 60β67.
Chang, G., M. J. Haeley, J. A. M. McHugh, J. T. L. Wang, Mining the World Wide Web: An Information Search Approach, Kluwer Academic Publishers, Boston, MA, 2001.
Chen, M., J. Park, P. S. Yu, Efficient Data Mining for Path Traversal Patterns, IEEE Transactions on Knowledge and Data Engineering, Vol. 10, No. 2, 1998, pp. 209β214.
Cios, K. J., W. Pedrycz, R. W. Swiniarski, L. A. Kurgan, Data Mining: A Knowledge Discovery Approach, Springer, New York, 2007.
Cromp, R. F., W. J. Campbell, Data Mining of Multidimensional Remotely Sansad Images, Proceedings of the CIKMβ93 Conference, Washington, DC, 1993, pp. 471β480.
Darlington, J., Y. Guo, J. Sutiwaraphun, H. W. To, Parallel Induction Algorithms for Data Mining, Proceedings of the Third International Conference on Knowledge Discovery and Data Mining KDDβ97, 1997, pp. 35β43.
Fayyad, U. M., G. Piatetsky-Shapiro, P. Smith, R. Uthurusamy, eds., Advances in Knowledge Discovery and Data Mining, AAAI Press/MIT Press, Cambridge, 1996.
Fukada, T., Y. Morimoto, S. Morishita, T. Tokuyama, Data Mining Using Two-Dimensional Optimized Association Rules: Scheme, Algorithms, and Visualization, Proceedings of SIGMODβ96 Conference, Montreal, 1996, pp. 13β23.
Han, J., Towards On-Line Analytical Mining in Large Databases, SIGMOD Record, Vol. 27, No. 1, 1998, pp. 97β107.
Han, J., M. Kamber, Data Mining: Concepts and Techniques, 2nd edition, Elsevier Inc., San Francisco, CA, 2006.
Han, J., J. Pei, Mining Frequent Patterns by Pattern-Growth: Methodology and Implications, SIGKDD Explorations, Vol. 2, No. 2, 2000, pp. 14β20.
Han, E., G. Karypis, V. Kumar, Scalable Parallel Data Mining for Association Rules, Proceedings of the SIGMODβ97 Conference, Tucson, 1997a, pp. 277β288.
Han, J., K. Koperski, N. Stefanovic, GeoMiner: A System Prototype for Spatial Data Mining, Proceedings of the SIGMODβ97 Conference, Arizona, 1997b, pp. 553β556.
Han, J., S. Nishio, H. Kawano, W. Wang, Generalization-Based Data Mining in Object-Oriented Databases Using an Object Cube Model, Proceedings of the CASCONβ97 Conference, Toronto, November 1997c, pp. 221β252.
Hedberg, S. R., Data Mining Takes Off at the Speed of the Web, IEEE Intelligent Systems, November/December 1999, pp. 35β37.
Hilderman, R. J., H. J. Hamilton, Knowledge Discovery and Measures of Interest, Kluwer Academic Publishers, Boston, MA, 2001.
Integral Solutions, 1999, Clementine, http://www.isl.co.uk/clem.html.
Kasif, S., Datascope: Mining Biological Sequences, IEEE Intelligent Systems, November/December 1999, pp. 38β43.
Kosala, R., H. Blockeel, Web Mining Research: A Survey, SIGKDD Explorations, Vol. 2, No. 1, 2000, pp. 1β15.
Kowalski, G. J., M. T. Maybury, Information Storage and Retrieval Systems: Theory and Implementation, Kluwer Academic Publishers, Boston, 2000.
Liu, B., W. Hsu, L. Mun, H. Lee, Finding Interesting Patterns Using User Expectations, IEEE Transactions on Knowledge and Data Engineering, Vol. 11, No. 6, 1999, pp. 817β825.
McCarthy, J., Phenomenal Data Mining, CACM, Vol. 43, No. 8, 2000, pp. 75β79.
Moore, S. K., Understanding the Human Genome, Spectrum, Vol. 37, No. 11, 2000, pp. 33β35.
Mulvenna, M. D., et al., eds., Personalization on the Net Using Web Mining, A Collection of Articles, CACM, Vol. 43, No. 8, 2000.
Ng, R. T., L. V. S. Lakshmanan, J. Han, A. Pang, Exploratory Mining and Optimization of Constrained Association Queries, Technical Report, University of British Columbia and Concordia University, October 1997.
Park, J. S., M. Chen, P. S. Yu, Efficient Parallel Data Mining for Association Rules, Proceedings of the CIKMβ95 Conference, Baltimore, MD, 1995, pp. 31β36.
Pinto, H., J. Han, J. Pei, K. Wang, Q. Chen, U. Dayal, Multi-Dimensional Sequential Pattern Mining, Proc. 2001 Int. Conf. on Information and Knowledge Management (CIKMβ01), Atlanta, GA, November 2001.
Salzberg, S. L., Gene Discovery in DNA Sequences, IEEE Intelligent Systems, November/December 1999, pp. 44β48.
Spiliopoulou, M., The Laborious
Comments (0)